BUILDING TRUST CONSTRUIRE LA CONFIANCE

PRODUCT DATA SHEET

Edition 02.2018/v1 CSC Master Format™ 03 25 00 COMPOSITE REINFORCING

Sika® CarboShear L

HIGH PERFORMANCE, SHEAR STRENGTHENING CFRP ELEMENTS

Description	Sika [®] CarboShear L elements are used within a high performance CFRP shear strengthening system for reinforce concrete structures. The system components consist of: Sika [®] CarboShear L shaped CFRP elements. Sikadur [®] -30 structural adhesive for externally-bonded CFRP.						
	Sika [®] CarboShear L complements the Sika [®] CarboDur [®] composite strengthening system, used for structural strengthenin of bending moments. The efficiency of the Sika [®] CarboShear L strengthening system has been proven by full-size tes performed in collaboration with the Swiss Federal Laboratories for Materials Testing and Research, EMPA.						
Where to Use	 External strengthening against shear force Increased loads due to Higher live loads in buildings and on building tilization. Damaged structural parts due to Corrosion of the inner shear reinforcer Vehicular impact upon structures. Fire damage of reinforced concrete. Improvement of serviceability Stress reduction in steel reinforcement Crack width and fatigue reduction. 	ve loads in buildings and on bridges. of building utilization. tructural parts due to n of the inner shear reinforcement. r impact upon structures. age of reinforced concrete. ent of serviceability duction in steel reinforcement. dth and fatigue reduction. structural system of walls, columns or slab sections for openings. specification nents in the event of earthquakes. design philosophy.					
Advantages	 Insufficient / inadequate reinforcement. Lightweight. Non-corrosive. Very high strength and durability. Well defined and tested anchorage system. Outstanding fatigue resistance. Low profile; can be coated. Low aesthetic impact. 						
	Technical Data Packaging Colour/Appearance Shelf Life	Cartons of 20 elements or sold individually Black. Carbon fibre reinforced polymer with an epoxy matrix. L shaped elements with a 90° bend. Both faces of the element are covered with release agent-free peel-ply fabric Unlimited. Store in dry conditions and away from exposure to direct sunlight.					
	Density Glass Transition Temperature Fibre Content	1.55 g/cm³ (0.89 oz/in³) > 80 °C (160 °F) > 56 % by volume					

	Disustant Duamantina								
	Physical Properties				147 141				
	Sika [®] CarboShear L Element Dimensions	Sikadur [®] -30 ¹ Consumption	Leg Length Short	ו Long	Width	Nominal Thickness without Peel-ply			
			mm (in)	mm (in)	mm (in)	mm (in)			
	4/20/50	0.5 kg (1.1 lb)	200 (8)	500 (20)	40 (1.57)	2 (0.0787)			
	4/30/70	0.6 kg (1.3 lb)	300 (12)	700 (28)	40 (1.57)	2 (0.0787)			
	4/50/100*	0.7 kg (1.5 lb) 1.0 kg (2.2 lb)	500 (20)	1000 (39)	40 (1.57)	2 (0.0787)			
	4/80/150* * Consult Sika Canada for n	800 (32)	1500 (59)	40 (1.57)	2 (0.0787)				
		* Consult Sika Canada for product availibility Leg length can be cut to measure (by saw or preferably by diamond disk). The inner radius of the bend zone is 25 mm (1 in).							
	1 Dependent on the size of anchorage hole, plane- and roughness, actual consumption of adhesive may differ. (anchor hole: assumption 150 mm depth								
	Tensile Strength*			> 1350 MPa (19.67 x 10 ⁴ psi)					
	E-Modulus of Elasticity*			> 90 000 MPa (131.18 x 10 ⁵ psi)					
	Strain at Break* >1.30 % *In direction of longitudinal fibres, considering a nominal thickness of 2 mm (0.0787 in).								
	² In direction or longitudinal nores, considering a nominal trickness of 2 mm (0.0787 m). Product properties are typically averages, obtained under laboratory conditions. Reasonable variations can be expected on-site due to local factors, including environmen preparation, application, curing and test methods.								
Design	The design procedur	e may be under				uilding Code Standard, Design an			
	Construction of Build described in the EMP	0 1		forced Polym	iers, CAN/CSA S8	06-02: ACI 440.2R-08: or the mod			
	Additional considerati	ons must include	2:						
	Procedure for Condition Determination: Measurements (geometry, reinforcement, level and evenness of the surface to be strengthened), quality of th construction material, climatic conditions, use a zoning plan.								
	construction material		ons, use a zonin	g pian.					
	Anchorage Forces:								
	Anchorage zone: The longer leg of the plate is anchored with Sikadur [®] -30 in the compression slab of the structure. The anchorage length has the following influence on the pull-out force of the plate:								
	Anchorage length		Pull-out force*	k	Rel. pu	III-out force			
	mm (in)		kN (lbf)		(% of b	reaking load)			
	mm (in)		kN (lbf)	310)		reaking load)			
	100 (4)		approx. 77 (17		approx	. 60			
	100 (4) 150 (6)		approx. 77 (17 approx. 100 (2	2480)	approx approx	. 60 . 80			
	100 (4)		approx. 77 (17	2480)	approx	. 60 . 80			
	100 (4) 150 (6) 200 (8) Bend Zone	shorter ends bo	approx. 77 (17 approx. 100 (2 approx. 120 (2	2480) 6977)	approx approx approx	. 60 . 80 . 95			
	100 (4) 150 (6) 200 (8) Bend Zone The length of the two		approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o	2480) 6977) ther to a « U	approx approx approx approx » has the followin	. 60 . 80 . 95 ng influence on the breaking load:			
	100 (4) 150 (6) 200 (8) Bend Zone The length of the two Overlapping zone len		approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o Average failur	2480) 6977) ther to a « U	approx approx approx approx » has the followir Efficie	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate			
	100 (4) 150 (6) 200 (8) Bend Zone The length of the two Overlapping zone len mm (in)		approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o Average failur kN (lbf)	2480) 6977) ther to a « U	 approx approx	. 60 . 80 . 95 ng influence on the breaking load:			
	100 (4) 150 (6) 200 (8) Bend Zone The length of the two Overlapping zone len mm (in) 150 (6)		approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o Average failur	2480) 6977) ther to a « U	 approx approx	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate			
	100 (4) 150 (6) 200 (8) Bend Zone The length of the two Overlapping zone len mm (in) 150 (6) 225 (9)		approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o Average failur kN (lbf) 67 (15062) 69 (15511)	2480) 6977) ther to a « U	 approx approx	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate			
	100 (4) 150 (6) 200 (8) Bend Zone The length of the two Overlapping zone len mm (in) 150 (6)		approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o Average failur kN (lbf) 67 (15062)	2480) 6977) ther to a « U	 approx approx	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate			
	100 (4) 150 (6) 200 (8) Bend Zone The length of the two Overlapping zone len mm (in) 150 (6) 225 (9) 300 (12) *These numbers are to	ngth est results. For d	approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o Average failur kN (lbf) 67 (15062) 69 (15511) 74 (16635) esign values col	2480) 6977) ther to a « U re force*	 approx approx	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate			
10W TO USE	100 (4) 150 (6) 200 (8) Bend Zone The length of the two Overlapping zone len mm (in) 150 (6) 225 (9) 300 (12) *These numbers are to	ngth est results. For d	approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o Average failur kN (lbf) 67 (15062) 69 (15511) 74 (16635) esign values col	2480) 6977) ther to a « U re force*	 approx approx	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate force of the plate) PA Test Report 116/7, 2002. A valu			
urface	100 (4)150 (6)200 (8)Bend ZoneThe length of the twoOverlapping zone lengthmm (in)150 (6)225 (9)300 (12)*These numbers are toof 45 kN (10116 lbf) pPrepare the surface of provide an open rougl	est results. For de er Sika® CarboSh on the side and u nened texture, co	approx. 77 (17 approx. 100 (2 approx. 120 (2 nded on each o Average failur kN (lbf) 67 (15062) 69 (15511) 74 (16635) esign values con ear L element of underside of the	2480) 6977) ther to a « U re force* nsult the abov can be choser e web by same RI CSP-5. Remo	 approx approx	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate force of the plate) PA Test Report 116/7, 2002. A valu r feasibility study purposes. r appropriate mechanical means to e particles by means of an industri			
urface	100 (4)150 (6)200 (8)Bend ZoneThe length of the twoOverlapping zone lengthmm (in)150 (6)225 (9)300 (12)*These numbers are toof 45 kN (10116 lbf) pPrepare the surface of provide an open rough vacuum cleaner. The readward weight).The adhesive strength	est results. For de er Sika® CarboSh on the side and un nened texture, co resultant concrete etion of the concrete etion of the engi	approx. 77 (17 approx. 100 (2 approx. 120 (2 approx. 120 (2 nded on each o Average failur kN (lbf) 67 (15062) 69 (15511) 74 (16635) esign values con ear L element of inderside of the onforming to ICF e substrate must must be verifie neer. A mean to	2480) 6977) ther to a « U re force* nsult the abov can be chosen e web by same RI CSP-5. Remo st be clean, oil	 approx approx	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate force of the plate) PA Test Report 116/7, 2002. A valu r feasibility study purposes. r appropriate mechanical means t e particles by means of an industri dry (max. surface moisture conter random pull off tests conducted t			
HOW TO USE Surface Preparation	100 (4) 150 (6) 200 (8) Bend Zone The length of the two Overlapping zone length mm (in) 150 (6) 225 (9) 300 (12) *These numbers are to of 45 kN (10116 lbf) p Prepare the surface of provide an open rough vacuum cleaner. The reference of 4% by weight). The adhesive strength ACI 503R, at the discr of 1.5 MPa (218 psi) v The evenness of the s	est results. For de est results. For de er Sika® CarboSh on the side and u nened texture, co esultant concrete etion of the engi vith concrete sub urface is checked om (0.098 in). Gre	approx. 77 (17 approx. 100 (2 approx. 120 (2 add on each o Average failur kN (lbf) 67 (15062) 69 (15511) 74 (16635) esign values con ear L element of moderside of the enforming to ICF e substrate must must be verifie neer. A mean to strate failure is I with a straight eater unevenne	2480) 6977) ther to a « U re force* nsult the abov can be choser e web by sand RI CSP-5. Remain to be clean, oil ed after surface ensile strengtl required befor can be ded ruler.	 approx approx	. 60 . 80 . 95 ng influence on the breaking load: ncy (% of ultimate force of the plate) PA Test Report 116/7, 2002. A valu			

	SIKA CANADA INC. Head Office 601, avenue Delmar Pointe-Claire, Quebec H9R 4A9	Other locations Toronto Edmonton Vancouver	1-800-933-SIKA www.sika.ca	Certified ISO 9001 (CERT-0102780) Certified ISO 14001 (CERT-0102791)		
	FOR INDUSTRIAL USE ONLY The Information, and in particular, the recommendations relating to the application and end-use of Sika products, are given in good faith based on Sika's current knowledge and experience of the products when properly stored, handled and applied under normal conditions, within their shelflife. In practice, the differences in materials, substrates and actual site conditions are such that no warranty in respect of merchantability or of fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, can be inferred either from this information, or from any recommendations, or from any other advice offered. The information contained herein does not relieve the user of the products from testing them for the intended application and purpose. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will be supplied on request or may be downloaded from our website at: www.sika.ca					
Information	most recent SAFETY DATA SHEET containing physical, ecological, toxicological and other safety-related data. KEEP OUT OF REACH OF CHILDREN					
Health and Safety	 Maximum substrate moisture content: 4 % by weight. Ambient and substrate temperature during application must be at least 3 °C (6 °F) above dew point. Sika® CarboShear L systems must be protected against continuous exposure to direct sunlight. For information and advice on the safe handling, storage and disposal of chemical products, users should refer to the 					
Limitations	 Design calculations must be made and certified by an independent, licensed professional engineer. Sika Canada cannot and will not determine the locations, spacing nor orientation of the Sika® CarboShear L elements on the actual project. Design guidelines are available through contact with Sika Canada Technical Services. The required mean adhesive (tensile) strength of the prepared concrete substrate must be 2 MPa (290 psi), with a minimum 1.5 MPa (218 psi). Maximum admissible working temperature: 50 °C (122 °F). Minimum application temperature: 10 °C (50 °F). 					
	surface of the shorter leg of the plate of the web side have to be primed with Sikadur®-30 first, in order to ensure that the plates remain in place. Remove excessive adhesive with a tongue shaped spatula. Do not disturb during the curing period. Once cured, the elements can be protected from ultra-violet light by over- coating, for example with Sikagard®-550 W Elastic or Sikagard® Color A-50 Lo-VOC.					
	boreholes filled with Sikadur [®] -30. When the anchor length is almost reached, press the element firmly onto the filler coat on the substrate, using a rubber roller to bed the element and evacuate any air. Subsequently remove excess of Sikadur [®] -30 with a cloth and scraper from the overlap zone on the underside of the web. Sika [®] CarboShear L elements on the opposite side are applied exactly the same way as on the first side. The exposed					
	the edge of the structure in order to avoid any risk of gap in the layer of adhesive. Holding the CFRP elements slightly obliquely, push the long Sika® CarboShear L legs of the first side of the web into the					
	shape to the inner face of the CFRP element and at the same time to the grooves of the anchor length, prepared in advance to avoid air entrapment in the anchoring adhesive. Spread a thin filler coat of Sikadur®-30 onto the prepared concrete surface. Apply a substantial amount of Sikadur®-30 to					
	Remove dust, dirt and moisture from the hole. Let the surfaces within the hole dry. Take care to drill the holes close to the web to allow bonding of the Sika [®] CarboShear L shaped elements with an adhesive layer of minimal thickness. Having removed the peel-ply fabric and acetone wiped the Sika [®] CarboShear L elements, apply Sikadur [®] -30 in an apex					
Installation	adhesive, applied using a bulk caulking dispenser or from a cartridge gun, fitted with a hose or tube. Alternatively, drill 3 parallel holes of 25 mm (1 in) diameter at 10 - 15 mm (3/8 to 5/8 in) intervals, forming an oblong hole of about 50 mm (2 in) in length.					
Sika [®] CarboShear L	(3/8 in). The adhesive is app the fibres.	plied with a tooth-trowel (5	mm [3/16 in]) with the grooves	red anchoring length plus 10 mm at right angles to the direction of lled with Sikadur®-30 structural		
	The day before the installation of the L-shaped profile, CFRP surfaces must be wiped clean using a clean, lint free white cloth and acetone until all residual carbon dust and glue are removed (i.e. white cloth remains white after wiping the laminate).					
	Sika® CarboShear L elements can then be cut using a saw or diamond cutting disk to suit the dimensions of the structure being strengthened.					
Sika [®] CarboShear L Preparation	Peel-ply fabric must be carefully removed from both sides of the Sika® CarboShear L element up to the intended cutting point. Ensure that the profile remains clean and free from loose friable material and contaminants.					
Sikadur [®] -30 Adhesiv Preparation	e Consult Sikadur®-30 Produ reinforcement.	ict Data Sheet for inform	ation on mixing and applicatio	n of the adhesive for bending		

BUILDING TRUST CONSTRUIRE LA CONFIANCE

