SIKA RESINOUS \& CEMENTITIOUS FLOORING SYSTEMS

BUILDING TRUST CONSTRUIRE LA CONFIANCE

ENVIRONMENTAL PRODUCT DECLARATION

Included floor coating systems

Sika ComfortFloor® ${ }^{\circledR}$
Sika ComfortFloor® ${ }^{\circledR}$ Pro Sikafloor ${ }^{\circledR}$ DecoFlake ${ }^{\circledR}$ System Sikafloor ${ }^{\circledR}$ ESD Control System Sikafloor ${ }^{\circledR}$ Fastflor ${ }^{\circledR}$ CR

Sikafloor® Morritex Sikafloor ${ }^{\circledR}$ NA PurCem ${ }^{\circledR}$ Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System
Sikafloor ${ }^{\circledR}$ Resoclad MRW Type II Sikafloor ${ }^{\circledR}$ Smooth Epoxy

Sikafloor® Terrazzo
Sikafloor®-52 PC Grey
Sikafloor®-53 PC White
Sikalastic ${ }^{@-3900 ~ T r a f f i c ~ C o a t i n g ~ S y s t e m ~}$

The development of this environmental product declaration (EPD) for resinous and cementitious floor coating systems manufactured in Canada was commissioned by Sika Canada. This EPD was developed in compliance with CAN/CSA-ISO 14025 and ISO 21930 by Groupe AGÉCO and has been verified by Athena Sustainable Materials Institute.

This EPD includes life cycle assessment (LCA) results for the production, construction, use and end-of-life stages (cradle-to-grave).

For more information about Sika Canada, please go to www.sika.ca
Issue date: July 10, 2019

In order to support comparative a ssertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differences in certa in assumptions, data quality, a nd variability between LCA data sets may still exist. As such, caution should be exercised when evaluating EPDs from different manufacturersorprograms, asthe EPD results may not be entirely comparable. Any EPD compa rison must be caried out at the construction works level per ISO 21930:2017 guidelines. The results of this EPD reflect an average performance by the product and its actual impacts may vary on a case-to-case basis. This declaration shall solely be used in a Business to Business (B2B) capacity.

Program operator	CSA Group	
	178 Rexdale Blvd, Toronto, ON, Canada M9W 1R3 \\| www.c sagroup.org	
Product	Sika resinous and cementitious flooring systems	
EPD registration number	2068-2738	
EPD recipient organization	Sika Canada	
	601 Delmar Ave., Pointe-Claire (Quebec) H9R 4A9 \| www.sika.ca	
Reference PCR	PC R for Resinous Floor Coatings	
	NSF Intemational \| Valid until December 17, 2023	
Date of issue (approval)	July 10, 2019	
Period of validity	J uly 10, 2019 - July 09, 2024	
The PCR review was conducted by	Thomas P. Gloria, Ph. D. \| Mr. Bill Sthough	Mr. Jack Geibig
The LCA and EPD were prepared by	Groupe AGÉCO \| www.groupeageco.ca	ageco@groupeageco.ca
This EPD and related data were independently verified by an extemal verifier, Lindita Bushi, according to CAN/CSA-ISO 14025:2006 and ISO 21930:2017.	Intemal $\underline{\underline{x} \text { Extemal }}$	
	Lindita Busluy	
	Lindita Bushi, Ph.D.	
	Athena Sustainable Materials Institute	
	280 Albert St., Suite 404, Ottawa, Ontario, Canada K1P 5 G 8	
	lindita.bushi@athena smi.ord \| www.athenasmi.org	
Functional unit	$1 \mathrm{~m}^{2}$ of covered and protected flooring surface fora period of 60 years	
Market and tec hnic al lifetimes	Market: 5 to 30 years \| Technical: 5 to 60 years	
Content of the products	See section 2 for complete description	
Data quality assessment score	Good	
Manufacturing locations	Pointe-Claire, Quebec, Canada	
	Edmonton, Alberta, Canada	
	Surrey, Bristish Columbia, Canada	

Sika Canada | Sika Resinous \& Cementitious Flooring Systems

Potential environmental impacts

The potential environmental impacts of $\mathbf{1} \mathbf{~ m}^{\mathbf{2}}$ of covered and protected flooring surface for a period of $\mathbf{6 0}$ years are summarized below for each floor system, service life, and main environmental indicator assessed (based on life cycle impact assessment method TRACI 2.1). For each floor system, there are at least two different service life values: a technical service life, for which coating systems are designed for, and a market service life, a typical period after which users replace coating systems. The service life also differs depending on the application, whether it is commercial or industrial. Please, refer to the full EPD or LCA report for more detailed results. Results on resource use, waste generated, and output flows are presented in the full EPD.

Total cradle-to-grave (A1-C4) results of resinous and cementitious flooring systems per \mathbf{m}^{2} of covered and protected surface
(complete results are available in the full EPD)

Systems	Application	Service life type	Service life	$\begin{gathered} \text { GWP } \\ \mathrm{kg} \mathrm{CO}_{2} \mathrm{eq} . \end{gathered}$	$\begin{gathered} \text { AP } \\ \mathrm{kg} \mathrm{SO}_{2} \text { eq. } \end{gathered}$	$\begin{gathered} \text { EP } \\ \mathrm{kg} \mathrm{~N} \text { eq. } \end{gathered}$	$\begin{gathered} \text { SFP } \\ \mathrm{kg} \mathrm{O}_{3} \text { eq. } \end{gathered}$	$\underset{\text { kg CFC-11 eq. }}{\text { ODP }}$
Sika ComfortFloor ${ }^{\circledR}$	Commercial	Market	20	$2.33 \mathrm{E}+1$	$1.12 \mathrm{E}-1$	$6.30 \mathrm{E}-2$	$1.45 \mathrm{E}+0$	8.35E-7
	Commercial	Technical	30	$2.27 \mathrm{E}+1$	$1.08 \mathrm{E}-1$	$6.09 \mathrm{E}-2$	$1.39 \mathrm{E}+0$	7.80E-7
	Industrial	Market	10	$2.52 \mathrm{E}+1$	$1.24 \mathrm{E}-1$	$6.91 \mathrm{E}-2$	$1.63 \mathrm{E}+0$	$1.00 \mathrm{E}-6$
	Industrial	Technical	15	$2.39 \mathrm{E}+1$	$1.16 \mathrm{E}-1$	$6.50 \mathrm{E}-2$	$1.51 \mathrm{E}+0$	8.91E-7
Sika ComfortFloor® ${ }^{\circledR}$ Pro	Commercial	Market	30	$4.71 \mathrm{E}+1$	$2.33 \mathrm{E}-1$	$1.09 \mathrm{E}-1$	$3.10 \mathrm{E}+0$	$1.31 \mathrm{E}-6$
	Industrial	Technical						
	Commercial	Technical	60	$4.65 \mathrm{E}+1$	$2.29 \mathrm{E}-1$	$1.07 \mathrm{E}-1$	$3.04 \mathrm{E}+0$	$1.26 \mathrm{E}-6$
	Industrial	Market	20	$4.77 \mathrm{E}+1$	$2.36 \mathrm{E}-1$	1.11E-1	$3.16 \mathrm{E}+0$	$1.37 \mathrm{E}-6$
Sikafloor ${ }^{\circledR}$ Decoflake ${ }^{\circledR}$ System	Commercial	Market	20	$1.96 \mathrm{E}+1$	$9.72 \mathrm{E}-2$	$6.17 \mathrm{E}-2$	$1.46 \mathrm{E}+0$	$2.01 \mathrm{E}-6$
	Commercial	Technical	30	$1.73 \mathrm{E}+1$	$8.73 \mathrm{E}-2$	$5.35 \mathrm{E}-2$	$1.29 \mathrm{E}+0$	$1.68 \mathrm{E}-6$
	Industrial	Market	10	$2.64 \mathrm{E}+1$	$1.27 \mathrm{E}-1$	$8.64 \mathrm{E}-2$	$1.96 \mathrm{E}+0$	$2.98 \mathrm{E}-6$
	Industrial	Technical	15	$2.19 \mathrm{E}+1$	$1.07 \mathrm{E}-1$	$6.99 \mathrm{E}-2$	$1.63 \mathrm{E}+0$	$2.33 \mathrm{E}-6$
Sikafloor ${ }^{\circledR}$ ESD Control System	Commercial	Market	10	$3.24 \mathrm{E}+1$	$1.63 \mathrm{E}-1$	$1.28 \mathrm{E}-1$	$2.50 \mathrm{E}+0$	$4.04 \mathrm{E}-6$
	Commercial	Technical	15	$2.20 \mathrm{E}+1$	$1.11 \mathrm{E}-1$	$8.83 \mathrm{E}-2$	$1.69 \mathrm{E}+0$	$2.71 \mathrm{E}-6$
	Industrial	Market and Technical	5	$6.37 \mathrm{E}+1$	$3.19 \mathrm{E}-1$	$2.48 \mathrm{E}-1$	$4.94 \mathrm{E}+0$	$8.01 \mathrm{E}-6$
Sikafloor ${ }^{\circledR}$ Fastflor ${ }^{\circledR}$ CR Broadcast	Commercial	Market	20	$1.40 \mathrm{E}+1$	$7.25 \mathrm{E}-2$	$5.70 \mathrm{E}-2$	$9.05 \mathrm{E}-1$	$1.85 \mathrm{E}-6$
	Commercial	Technical	30	$1.24 \mathrm{E}+1$	$6.40 \mathrm{E}-2$	$5.06 \mathrm{E}-2$	8.01E-1	$1.62 \mathrm{E}-6$
	Industrial	Market	10	$1.90 \mathrm{E}+1$	$9.78 \mathrm{E}-2$	$7.63 \mathrm{E}-2$	$1.22 \mathrm{E}+0$	$2.53 \mathrm{E}-6$
	Industrial	Technical	15	$1.57 \mathrm{E}+1$	$8.09 \mathrm{E}-2$	$6.35 \mathrm{E}-2$	$1.01 \mathrm{E}+0$	$2.08 \mathrm{E}-6$
Sikafloor ${ }^{\circledR}$ Fastflor ${ }^{\circledR}$ CR Smooth	Commercial	Market	10	$1.79 \mathrm{E}+1$	$9.14 \mathrm{E}-2$	$7.34 \mathrm{E}-2$	$1.10 \mathrm{E}+0$	$2.35 \mathrm{E}-6$
	Commercial	Technical	15	$1.28 \mathrm{E}+1$	$6.54 \mathrm{E}-2$	$5.36 \mathrm{E}-2$	7.85E-1	$1.65 \mathrm{E}-6$
	Industrial	Market and Technical	5	$3.33 \mathrm{E}+1$	$1.69 \mathrm{E}-1$	$1.33 \mathrm{E}-1$	$2.06 \mathrm{E}+0$	$4.45 \mathrm{E}-6$
Sikafloor ${ }^{\circledR}$ Morritex ${ }^{\circledR}$ trowelled	Commercial		30	$1.49 \mathrm{E}+1$	$7.61 \mathrm{E}-2$	$5.37 \mathrm{E}-2$	$1.35 \mathrm{E}+0$	$2.09 \mathrm{E}-6$
	Industrial	Technical						
	Commercial	Technical	60	$1.28 \mathrm{E}+1$	$6.46 \mathrm{E}-2$	$4.59 \mathrm{E}-2$	$1.15 \mathrm{E}+0$	$1.79 \mathrm{E}-6$
	Industrial	Market	20	$1.70 \mathrm{E}+1$	$8.75 \mathrm{E}-2$	$6.15 \mathrm{E}-2$	$1.55 \mathrm{E}+0$	$2.39 \mathrm{E}-6$

[^0]
Sika Canada | Sika Resinous \& Cementitious Flooring Systems

Total cradle-to-grave (A1-C4) results of resinous and cementitious flooring systems per \mathbf{m}^{2} of covered and protected surface (cont'd)

Systems	Application	Service life type	Service life	$\begin{gathered} \mathrm{GWP} \\ \mathrm{~kg} \mathrm{CO}_{2} \text { eq. } \end{gathered}$	$\begin{gathered} \text { AP } \\ \mathrm{kg} \mathrm{SO}_{2} \text { eq. } \end{gathered}$	$\begin{gathered} \text { EP } \\ \mathrm{kg} \mathrm{~N} \text { eq. } \end{gathered}$	$\begin{gathered} \text { SFP } \\ \mathrm{kg} \mathrm{O}_{3} \text { eq. } \end{gathered}$	$\underset{\text { kg CFC-11 eq. }}{\text { ODP }}$
Sikafloor ${ }^{\circledR}$ Morritex ${ }^{\circledR}$ smooth and broadcast	Commercial	Market	20	$2.90 \mathrm{E}+1$	$1.58 \mathrm{E}-1$	$1.08 \mathrm{E}-1$	$2.75 \mathrm{E}+0$	$4.05 \mathrm{E}-6$
	Commercial	Technical	30	$2.21 \mathrm{E}+1$	$1.21 \mathrm{E}-1$	$8.31 \mathrm{E}-2$	$2.10 \mathrm{E}+0$	$3.09 \mathrm{E}-6$
	Industrial	Market	10	$4.95 \mathrm{E}+1$	$2.69 \mathrm{E}-1$	$1.82 \mathrm{E}-1$	$4.68 \mathrm{E}+0$	$6.95 \mathrm{E}-6$
	Industrial	Technical	15	$3.58 \mathrm{E}+1$	$1.95 \mathrm{E}-1$	$1.33 \mathrm{E}-1$	$3.39 \mathrm{E}+0$	$5.02 \mathrm{E}-6$
Sikafloor ${ }^{\circledR}$ NA PurCem ${ }^{\circledR}$	Industrial	Market	20	$1.78 \mathrm{E}+1$	8.94E-2	3.23E-2	$1.42 \mathrm{E}+0$	$1.48 \mathrm{E}-6$
	Industrial	Technical	30	$1.71 \mathrm{E}+1$	8.52E-2	$3.07 \mathrm{E}-2$	$1.36 \mathrm{E}+0$	$1.40 \mathrm{E}-6$
Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System HDB and trowelled	Commercial	Market	30	$1.64 \mathrm{E}+1$	7.82E-2	$5.93 \mathrm{E}-2$	$1.41 \mathrm{E}+0$	$2.29 \mathrm{E}-6$
	Industrial	Technical						
	Commercial	Technical	60	$1.42 \mathrm{E}+1$	$6.84 \mathrm{E}-2$	$5.11 \mathrm{E}-2$	$1.22 \mathrm{E}+0$	$1.98 \mathrm{E}-6$
	Industrial	Market	20	$1.87 \mathrm{E}+1$	$8.80 \mathrm{E}-2$	$6.75 \mathrm{E}-2$	$1.59 \mathrm{E}+0$	$2.61 \mathrm{E}-6$
Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System Broadcast	Commercial	Market	20	$1.61 \mathrm{E}+1$	7.47E-2	$6.01 \mathrm{E}-2$	$1.23 \mathrm{E}+0$	$2.27 \mathrm{E}-6$
	Commercial	Technical	30	$1.38 \mathrm{E}+1$	$6.49 \mathrm{E}-2$	$5.19 \mathrm{E}-2$	$1.05 \mathrm{E}+0$	$1.96 \mathrm{E}-6$
	Industrial	Market	10	$2.28 \mathrm{E}+1$	$1.04 \mathrm{E}-1$	8.46E-2	$1.79 \mathrm{E}+0$	3.22E-6
	Industrial	Technical	15	$1.83 \mathrm{E}+1$	$8.44 \mathrm{E}-2$	$6.83 \mathrm{E}-2$	$1.42 \mathrm{E}+0$	$2.59 \mathrm{E}-6$
Sikafloor® Resoclad MRW Type II	Commercial	Market	20	$8.95 \mathrm{E}+0$	$4.22 \mathrm{E}-2$	$3.32 \mathrm{E}-2$	$9.06 \mathrm{E}-1$	$7.37 \mathrm{E}-7$
	Commercial	Technical	30	$7.37 \mathrm{E}+0$	$3.47 \mathrm{E}-2$	$2.65 \mathrm{E}-2$	$6.89 \mathrm{E}-1$	$5.68 \mathrm{E}-7$
	Industrial	Market	10	$1.37 \mathrm{E}+1$	$6.49 \mathrm{E}-2$	$5.33 \mathrm{E}-2$	$1.56 \mathrm{E}+0$	$1.25 \mathrm{E}-6$
	Industrial	Technical	15	$1.05 \mathrm{E}+1$	$4.98 \mathrm{E}-2$	$3.99 \mathrm{E}-2$	$1.12 \mathrm{E}+0$	$9.07 \mathrm{E}-7$
Sikafloor ${ }^{\circledR}$ Smooth Epoxy	Commercial	Market	10	$1.54 \mathrm{E}+1$	8.21E-2	$6.02 \mathrm{E}-2$	$1.40 \mathrm{E}+0$	$2.06 \mathrm{E}-6$
	Commercial	Technical	15	$1.13 \mathrm{E}+1$	$6.03 \mathrm{E}-2$	$4.55 \mathrm{E}-2$	$1.02 \mathrm{E}+0$	$1.49 \mathrm{E}-6$
	Industrial	Market and Technical	5	$2.75 \mathrm{E}+1$	$1.48 \mathrm{E}-1$	$1.04 \mathrm{E}-1$	$2.55 \mathrm{E}+0$	$3.77 \mathrm{E}-6$
Sikafloor® ${ }^{\circledR}$ Terrazzo	Commercial	Market	30	$2.90 \mathrm{E}+1$	$1.54 \mathrm{E}-1$	$1.19 \mathrm{E}-1$	$2.69 \mathrm{E}+0$	$3.68 \mathrm{E}-6$
	Commercial	Technical	60	$2.85 \mathrm{E}+1$	$1.51 \mathrm{E}-1$	1.17E-1	$2.58 \mathrm{E}+0$	$3.63 \mathrm{E}-6$
Sikafloor®-52 PC Grey	Commercial	Market	30	$2.75 \mathrm{E}+1$	1.16E-1	$5.85 \mathrm{E}-2$	$2.33 \mathrm{E}+0$	$3.16 \mathrm{E}-6$
	Industrial	Technical						
	Commercial	Technical	60	$2.08 \mathrm{E}+1$	$8.84 \mathrm{E}-2$	4.57E-2	$1.74 \mathrm{E}+0$	$2.35 \mathrm{E}-6$
	Industrial	Market	20	$3.43 \mathrm{E}+1$	$1.45 \mathrm{E}-1$	7.12E-2	$2.92 \mathrm{E}+0$	$3.96 \mathrm{E}-6$
Sikafloor®-53 PC White	Commercial	Market	30	$3.03 \mathrm{E}+1$	1.36E-1	$6.33 \mathrm{E}-2$	$2.77 \mathrm{E}+0$	3.67E-6
	Industrial	Technical						
	Commercial	Technical	60	$2.28 \mathrm{E}+1$	$1.03 \mathrm{E}-1$	$4.93 \mathrm{E}-2$	$2.07 \mathrm{E}+0$	$2.74 \mathrm{E}-6$
	Industrial	Market	20	$3.77 \mathrm{E}+1$	$1.69 \mathrm{E}-1$	7.72E-2	$3.47 \mathrm{E}+0$	$4.60 \mathrm{E}-6$
Sikalastic ${ }^{\circledR}$-3900 Traffic Coating System	Commercial	Market	10	$3.21 \mathrm{E}+1$	$1.56 \mathrm{E}-1$	$9.27 \mathrm{E}-2$	$2.36 \mathrm{E}+0$	$2.83 \mathrm{E}-6$
	Commercial	Technical	15	$2.31 \mathrm{E}+1$	$1.12 \mathrm{E}-1$	$6.75 \mathrm{E}-2$	$1.68 \mathrm{E}+0$	$2.01 \mathrm{E}-6$

[^1]
Additional environmental information

This section provides additional relevant environmental information about the manufacturer and the floor systems that was not derived from the LCA.

Sika's Commitment to sustainability

Providing long lasting and high-performance solutions to the benefit of our customers, Sika is committed to pioneering sustainable solutions that are safer, have the lowest impact on resources and address global environmental challenges. Therefore, Sika assumes the responsibility to provide sustainable solutions in order to improve material, water and energy efficiency in construction and transportation. Sika strives to create more value for all its stakeholders with its products, systems and solutions along the whole value chain and throughout the entire life span of its products. Sika is committed to measure, improve and communicate sustainable value creation: "More value, less impact" refers to the company's commitment to maximize the value of its solutions to all stakeholders while reducing resource consumption and impact on the environment.

VOC content

Individual coating products in this EPD contain between 0 and 200 grams of VOC per litre. The VOC content was measured according to EPA 24 or ASTM D2369 standard methods. All products were compliant with the Canadian "Volatile Organic Compound (VOC) Concentration Limits for Architectural Coatings Regulations" at the time of the study. Sika Canada discloses the VOC content of its products.

Waste packaging management

Sika Canada encourages its customers to responsibly dispose of used packaging. Most of them are recyclable. To make recycling easier, it is recommended to separate used packaging according to their material (paper, plastic and metal). Ask information to local municipalities about recycling programs for industrial coating packaging.

For more information: www.sika.ca

1. Description of Sika Canada

Sika Canada Inc., a member of the Sika Group, is a leader in the field of specialty chemicals for construction. Sika's product portfolio encompasses a vast range of construction solutions, "From Foundations Upwards", including waterproofing solutions, concrete production (ready mix and precast), concrete repair and protection, joint sealing, elastic \& structural bonding, specialized flooring including industrial, commercial, institutional \& decorative systems and roofing systems. This extensive range of products enablestailor-made solutions, in new construction as well as refurbishment. Beyond the quality and performance of its products, Sika has eamed its reputation by offering an unparalleled level of expertise and support, from conception to completion.

2. Description of product

2.1. Definition and product classific ation

This EPD developed with the Product Category Rules (PCR) for Resinous Floor Coatings from NSF covers 14 floor coating systems comprising resinous and cementitious products. Resinous systems include epoxy, polyurethane, polyurethane aliphatic, and urethane acrylic-type systems made of individual coatings (i.e. primer, basecoat and topcoat) sold as liquid components. Components are shipped to the construction site where they are mixed and coated one above the other. The cementitious systems are made of individual cementitio us and resinouscoatings(i.e. primer, basecoat and topcoat). Cementitious components are sold as powders that are then mixed with water or a polymerduring installation.

Figure 1: Examples of resinous floor coating systems
The main substanc es entering the composition of resinous floor coating systems are presented in Table 1.
Table 1: Composition of resinous floor coating systems included in this EPD

System	Components	Role
Sika Comfortoor®	Sika floo ${ }^{\text {® }}$-156CA	Primer
	Sika floor®-330	Base coat
	Sika floor®-304 W NA/ Sika floor ${ }^{\text {®-3 }}$-305 W NA	Top coat
Sika ComfortPoor ${ }^{\circledR}$ Pro	Sika floor ${ }^{\circledR}$ Comfort Adhesive	Mat adhesive
	Sika floor ${ }^{\text {® }}$ C omfort Regupol-6015H	Recycled rubber mat
	Sika floor ${ }^{\circledR}$ Comfort Porefiller	Mat pore filler
	Sika floor®-330	Base coat
	Sika floor ${ }^{\text {®-304 }}$ W W NA/ Sika floor ${ }^{\text {®-3 }} 305$ W NA	Top coat

System	Component	Role
Sikafloor® DecoFake ${ }^{\text {® }}$	Sika floor®-261 ${ }^{\text {CA/ Sikafloorere-1610 (if high humidity) }}$	Primer
	Quartz aggregate	Aggregate
	Sika floore-261CA	Base Coat
	Sika floor® ${ }^{\text {D }}$ DecoFlake ${ }^{\circledR}$	Color flakes
	Sika floor®-2002	Top coat
Sikafloor® ESD Control	Sika floore-156CA/Sikafloore-1610 (if high humidity)	Primer
	Sika floor®-222 W ESD	Base Coat
	Sika floor®-260 ESD/Sikafloor-270 ESD	Top Coat
Sikafloor ${ }^{\text {® Fastflor }}{ }^{\text {® }}$ CR	Sika floor ${ }^{\text {® }}$ Fastflo ${ }^{\text {® }}$ CR	Primer
	Quartz aggregate	Aggregate
	Sika floor® ${ }^{\text {Pastflo }{ }^{\text {® }} \text { CR }}$	Base Coat
Sikafloor® Monitex	Sika floor®-156CA	Primer
	Sika floor-156 ${ }^{\text {ca }}$	Screed mortar
	Sika floor ${ }^{\text {® }}$ Aggregate PT	Screed mortar
	Sika floore-261 ${ }^{\text {CA }}$	Base Coat
	Sika floor ${ }^{\text {®-262 }}$ - ${ }^{\text {ca }}$	Grout Coat
	Sika floore-261 ${ }^{\text {CA }}$	Top Coat
Sikafloor ${ }^{\text {P }}$ PurCem ${ }^{\text {® }}$	Sikafloor®-22 NA PurCem ${ }^{\text {® }}$	Broadcast body coat
	Sand	Broadcast body coat
	Sika floor®-31 NA PurCem®/Sikafloore-33 NA PurCem ${ }^{\text {® }}$	Top coat
Sikafloor ${ }^{\text {® }}$ Quartzite ${ }^{\text {® }}$	Sika floore-156CA/Sika floor® Duoc hem-9205	Primer
	Sika floore-156CA/Sika floor® Duochem-9205	Screed mortar
	Sika floor ${ }^{\otimes}$ Aggregate PT	Screed mortar
	Sika floor® ${ }^{\text {Trowel/ Broadcast Quartz Aggregate }}$	Screed mortar
	Sikafloor® Duochem-9200	Grout coat
	Sika floor ${ }^{\text {®-2002/ Sikafloor }{ }^{\text {® }} \text {-217 }}$	Top coat
Sikafloor ${ }^{\circledR}$ Resoclad MRWType II	Sikalastic ${ }^{\text {® }} 390$ Membrane	Base coat
	Sika floor® ${ }^{\text {D }}$ Duoc hem-6001	Top coat
Sikafloor ${ }^{\text {® }}$ Smooth	Sika floore-261 ${ }^{\text {CA }}$ / Sika floor®-1610 (if high humidity)	Primer
Epoxy	Sika floore-261CA	Top Coat
	Sika floor® ${ }^{\text {® }}$ Terazzo	Screed mortar
	Sika floor ${ }^{\text {® }}$ Duochem-305	Top Coat
Sikafloor-52 PC Grey	Sika floor®-156CA/Sikafloore-1610 (if high humidity)	Primer
	Sikafloor®-52 PC Grey	Base coat
	Scofield ${ }^{\text {® }}$ Formula One ${ }^{\text {m }}$ Lithium Densifier MP	Additive
	Scofield ${ }^{\circledR}$ Formula One ${ }^{\text {m }}$ Guard-W	Additive
	Scofield ${ }^{\circledR}$ Formula One ${ }^{\text {m }}$ Lquid Dye	Additive
Sikafloor-53 PC White		Primer
	Sika floor®-53 PC White	Base coat
	Scofield ${ }^{\text {® }}$ Formula One ${ }^{\text {m }}$ Lithium Densifier MP	Additive
	Scofield ${ }^{\circledR}$ Formula One ${ }^{\text {m' }}$ Guard-W	Additive
	Scofield ${ }^{\circledR}$ Formula One ${ }^{\text {m }}$ Lquid Dye	Additive
Sikalastic ${ }^{\text {® }} 3900$ Traffic	Sika ${ }^{\circledR}$ MTPrimer/Sikala stic ${ }^{\text {® }}$-120 FS Primer	Primer
	Sikalastic ${ }^{\text {- }} 390$ Membrane	Base coat
	Sika lastic © $391 \mathrm{~N} /$ Sikalastic ${ }^{\text {® - } 220 ~ F S ~}$	Top coat

More information on these systems is available on Sika Canada's website:
https://can.sika.com/en/solutions-and-products.html

2.2. Material content

The material composition of each component as disclosed in SDS (Safety Data Sheets) are provided in Table 2 as required by the PCR. The complete component formulations were used to calculate the LCA results.

Table 2: Composition of components as disc losed in SDS

Components	Ingredient ${ }^{1}$	CASNo.	Concentration (\%w/w)
Quarta agregate	No SDS a vailable for this product		
Scofield ${ }^{\circledR}$ Formula One ${ }^{\mathbb{M}}$ Lithium Densifier MP	Silic ic acid, lithium salt	12627-14-4	$>=10-<=30$
Scofield ${ }^{\circledR}$ Formula One ${ }^{T M}$ Lquid Dye Concentrate	Propylene carbonate	108-32-7	$>=80-<=100$
Scofield ${ }^{\circledR}$ Formula	Siloxanes and Silicones, di-Me, methoxy Ph, polymers with Ph silsesquioxanes, methoxy-te minated	68957-04-0	$>=1-<2$
	Silic ic acid, lithium salt	12627-14-4	$>=1-<2$
Sika ${ }^{\text {® }}$ MTPrimer	(Part A) Quartz (SiO2)	14808-60-7	$>=40-<50$
	(Part A) bisphenol-A-(epic hlorhydrin) epoxy resin	25068-38-6	$>=30-<40$
	(Part A) bisphenol-F-(epic hlorhydrin) epoxy resin	28064-14-4	$>=10-<20$
	(Part A) oxirane, mono[(C12-14a lkyloxy)methyl]derivatives	68609-97-2	$>=2-<5$
	(Part A) Quartz (SiO2) < $<\mu m$	14808-60-7	$>=0-<1$
	(Part B) Benzyl alcohol	100-51-6	$>=40-<50$
	(Part B) Isophoronediamine	2855-13-2	$>=10-<20$
	(Part B) m-phenylenebis(methylamine)	1477-55-0	$>=10-<20$
	(Part B) bisphenol-A-(epic hlorhydrin) epoxy resin	25068-38-6	$>=10-<20$
	(Part B) ethanol	64-17-5	$>=5-<10$
	(Part B) Phenol, 4-dodecyl-, branched	$\begin{aligned} & \text { 210555-94- } \\ & 5 \end{aligned}$	$>=2-<5$
	(Part B) 2,4,6-tris(dimethyla minomethyl)phenol	90-72-2	$>=2-<5$
Sikafloor ${ }^{\text {® }}$	Quart (SiO2)	14808-60-7	$>=90-<=100$
Aggregate PT	Dibutylphtalate	84-74-2	$>=0.1-<1$
Sikafloor ${ }^{\circledR}$ Comfort Adhesive	(Part A) Quartz (SiO2)	14808-60-7	$>=0-<1$
	(Part B) Diphenylmetha ned iisocyanate, isomeres and homologues	9016-87-9	$>=50-<60$
	(Part B) 4,4'-methylenediphenyl diiso cyanate	101-68-8	$>=40-<50$
	(Part B) o-(p-isocyanatobenzyl)phenyl isocyanate (MDI)	5873-54-1	$>=5-<10$
Sikafloor ${ }^{\circledR}$ Comfort Porefiller	Alkane, C 14-17-, chloro-	85535-85-9	$>=10-<20$
	Quart (SiO2)	14808-60-7	$>=5-<10$
	2-ethylhexane-1,3-diol	94-96-2	$>=1-<2$
	Quartz (SiO2) $<5 \mu \mathrm{~m}$	14808-60-7	$>=0-<1$

Sikafloor ${ }^{\circledR}$ Comfort
Regupol-6015H
No SDS a vaila ble for this product

[^2]| Components | Ingredients ${ }^{1}$ | CASNO. | Concentration (\%w/w) |
| :---: | :---: | :---: | :---: |
| Sikafloor ${ }^{\circledR}$ DecoFlake ${ }^{\circledR}$ | No SDS a vailable for this product | | |
| Sikafloor ${ }^{\text {® }}$ | 1-methyl-2-pyrolidone | 872-50-4 | $>=5-<10$ |
| Duochem-305 | triethylamine | 121-44-8 | $>=0-<1$ |
| Sikafloor ${ }^{\circledR}$
 Duochem-6001 | (Part A) bisphenol-A-(epic hlorhydrin) epoxy resin | 25068-38-6 | $>=10-<20$ |
| | (Part A) oxirane, mono[(C12-14alkyloxy)methyl]derivatives | 68609-97-2 | $>=1-<2$ |
| | (Part B) Fatty acids, C18-unsatd., dimers, reaction products with polyethylenepolyamines | 68410-23-1 | $>=20-<30$ |
| | (Part B) Benzyl alcohol | 100-51-6 | $>=10-<20$ |
| | (Part B) 1-methoxy-2-propanol | 107-98-2 | $>=10-<20$ |
| | (Part B) Ac etic acid | 64-19-7 | $>=2-<5$ |
| | (Part B) triethylenetetramine | 112-24-3 | $>=2-<5$ |
| | (Part B) 2,4,6-tris(dimethyla minomethyl)phenol | 90-72-2 | $>=1-<2$ |
| Sikafloor® Duochem-9200 | bisphenol-A-(epic hlormydrin) epoxy resin | 25068-38-6 | $>=90-<=100$ |
| | oxirane, mono[(C 12-14-alkyloxy)methyl]derivatives | 68609-97-2 | $>=2-<5$ |
| Sikafloor ${ }^{\circledR}$
 Duochem-9205 | (Part A) bisphenol-A-(epic hlornydrin) epoxy resin | 25068-38-6 | $>=90-<=100$ |
| | (Part A) oxirane, mono[(C12-14alkyloxy)methyl]derivatives | 68609-97-2 | $>=2-<5$ |
| | (Part B) Isophoronediamine | 2855-13-2 | $>=40-<50$ |
| | (Part B) Benzyl alcohol | 100-51-6 | $>=40-<50$ |
| | (Part B) Phenol, 4-nonyl-, branched | 84852-15-3 | $>=10-<20$ |
| | (Part B) Salic ylic acid | 69-72-7 | $>=1-<2$ |
| Sika floor ${ }^{\circledR}$ Fastflo ${ }^{\circledR}$ CR | bisphenol-A-(epic hlorhydrin) epoxy resin | 25068-38-6 | $>=85-<=90$ |
| | 2,3-epoxypropyl o-tolyl ether | 2210-79-9 | $>=5-<10$ |
| | (R)-p-mentha-1,8-diene | 5989-27-5 | $>=0-<1$ |
| Sikafloor® ${ }^{\text {Terrazz }}$ | (Part A) bisphenol-A-(epichlorhydrin) epoxy resin | 25068-38-6 | $>=50-<=60$ |
| | (Part A) Dibutylphthalate | 84-74-2 | $>=2-<5$ |
| | (Part A) 1,3-bis(2,3-epoxypropoxy)-2,2dimethylpropane | 17557-23-2 | $>=2-<5$ |
| | (Part A) Trimethylopropane triglyc idylether | 30499-70-8 | $>=0-<1$ |
| | (Part A) Quartz (SiO2) < $5 \mu \mathrm{~m}$ | 14808-60-7 | $>=0-<1$ |
| | (Part B) Benzyl alcohol | 100-51-6 | $>=40-<50$ |
| | (Part B) Isophoronediamine | 2855-13-2 | $>=30-<40$ |
| | (Part B) m-phenylenebis(methylamine) | 1477-55-0 | $>=5-<10$ |
| | (Part B) 2,2'-iminodiethylamine | 111-40-0 | $>=1-<2$ |
| Sikafloor® Trowel Quart Aggregate | Quartz (SiO2) < $5 \mu \mathrm{~m}$ | 14808-60-7 | $>=90-<=100$ |

Components	Ingredient ${ }^{1}$	CAS No.	Concentration (\%W/w)
Sikafloor®-156CA	(Part A) bisphenol-A-(epichlorhydrin) epoxy resin	25068-38-6	$>=70-<=80$
	(Part A) bisphenol-F-(epichlorhydrin) epoxy resin	28064-14-4	$>=5-<10$
	(Part A) oxirane, mono[(C12-14a lkyloxy)methyl]derivatives	68609-97-2	$>=2-<5$
	(Part A) Benzyl alcohol	100-51-6	$>=2-<5$
	(Part A) (R)-p-mentha-1,8-diene	5989-27-5	$>=0-<1$
	(Part B) Benzyl a lcohol	100-51-6	$>=40-<50$
	(Part B) Isophoronediamine	2855-13-2	$>=10-<20$
	(Part B) m-phenylenebis(methylamine)	1477-55-0	$>=10-<20$
	(Part B) 3,6,9-tria za undecamethylenedia mine	112-57-2	$>=10-<20$
	(Part B) 2,4,6-tris(dimethyla minomethyl)phenol	90-72-2	$>=5-<10$
	(Part B) Trimethylhexa methylened ia mine-1,6 cyanethylated	93941-62-9	$>=2-<5$
	(Part B) Trimethylhexamethylenediamine	25620-58-0	$>=1-<2$
Sika floor®-1610	Quartz (SiO2)	14808-60-7	$>=40-<50$
	bisphenol-A-(epichlorhydrin) epoxy resin	25068-38-6	$>=30-<40$
	bisphenol-F-(epichlorhydrin) epoxy resin	28064-14-4	$>=10-<20$
	oxirane, mono[(C 12-14-a lkyloxy)methyl]derivatives	68609-97-2	$>=2-<5$
	Quartz (SiO2) < $5 \mu \mathrm{~m}$	14808-60-7	$>=0-<1$
Sika floor®-2002	bisphenol-A-(epichlorhydrin) epoxy resin	25068-38-6	$>=90-<=95$
	1,3-bis(2,3-epoxypropoxy)-2,2-dimethylpropane	17557-23-2	$>=5-<10$
	[[(2-ethylhexyl)oxy]methyl]oxirane (2-ethylhexyl glycidyl ether)	2461-15-6	$>=2-<5$
Sika floor ${ }^{\circledR}$-217	bisphenol-A-(epichlorhydrin) epoxy resin (Part A)	25068-38-6	$>=60-<80$
	bisphenol-F-(epichlorhydrin) epoxy resin (Part A)	28064-14-4	$>=10-<20$
	oxirane, mono[(C 12-14-alkyloxy)methyl]derivatives (Part A)	68609-97-2	$>=5-<10$
	Benzyl alcohol (Part A)	100-51-6	$>=2-<5$
	ethyl 4- [[(methylphenyla mino) methylene]a mino]benzoate (Part A)	57834-33-0	$>=2-<5$
	Benzyl a lcohol (Part B)	100-51-6	$>=30-<60$
	Isophoronediamine (Part B)	2855-13-2	$>=10-<30$
	2,2,4(or 2,4,4)-trimethylhexa ne-1,6-diamine (Part B)	25513-64-8	$>=10-<30$
	Phenol, 4-dodecyl-, branched (Part B)	$\begin{aligned} & 210555-94- \\ & 5 \end{aligned}$	$>=5-<10$
Sika floore-22 NA PurCem ${ }^{\circledR}$	(Part A) butane-1,4-diol	110-63-4	$>=2-<5$
	(Part B) 4,4'-methylenediphenyl diiso c ya nate	101-68-8	$>=40-<50$
	(Part B) Diphenylmetha ned iisocya nate, isomeres and homologues	9016-87-9	$>=40-<50$
	(Part B) o-(p-iso cyanatobenzyl)phenyl iso cyanate (MDI)	5873-54-1	$>=10-<25$
	(Part C) Quartz (SiO2)	14808-60-7	$>=15-<40$
	(Part C) Quartz (SiO2) $<5 \mu \mathrm{~m}$	14808-60-7	$>=15-<40$
	(Part C) Portland cement	65997-15-1	$>=15-<40$

Components	Ingredient ${ }^{1}$	CAS No.	Concentration (\%W/ w)
Sikafloor®-222 W ESD	(Part A) bisphenol-A-(epichlorhydrin) epoxy resin	25068-38-6	$>=40-<50$
	(Part A) bisphenol-F-(epichlorhydrin) epoxy resin	28064-14-4	$>=10-<20$
	(Part A) oxirane, mono[(C12-14a lkyloxy)methyl]derivatives	68609-97-2	$>=2-<5$
	(Part B) 2-Propenenitrile, reaction products with 3a mino-1,5,5-trimethylc yc lohexa nemetha na mine	90530-15-7	$>=2-<5$
	(Part B) Isophoronedia mine	2855-13-2	$>=0-<1$
	(Part B) m-phenylenebis(methylamine)	1477-55-0	$>=0-<1$
Sika floor®-260 ESD	(Part A) Quartz (SiO2)	14808-60-7	$>=30-<=60$
	(Part A) bisphenol-A-(epichlorhydrin) epoxy resin	25068-38-6	$>=30-<=60$
	(Part A) bisphenol-F-(epichlorhydrin) epoxy resin	28064-14-4	$>=5-<10$
	(Part A) oxirane, mono[(C12-14alkyloxy)methyl]derivatives	68609-97-2	$>=1-<5$
	(Part A) bisphenol-F-(epichlorhydrin) epoxy resin	9003-36-5	$>=1-<5$
	(Part A) p-tert-butylphenyl 1-(2,3-epoxy)propyl ether	3101-60-8	$>=1-<5$
	(Part A) Quartz (SiO2) < $<\mu \mathrm{m}$	14808-60-7	$>=0.1-<1$
	(Part B) Benzyl alcohol	100-51-6	$>=10-<30$
	(Part B) Quatemary a mmonium compounds, C12-14 (even-numbered)-alkylethyld imethyl, ethyl sulphates	68308-64-5	$>=10-<30$
	(Part B) Isophoronediamine	2855-13-2	$>=10-<30$
	(Part B) 2-propenenitrile, reaction products with 2,2,4(or 2,4,4)-trimethyl-1,6-hexa nedia mine	90530-20-4	$>=10-<30$
	(Part B) bisphenol-A-(epic hlorhydrin) epoxy resin	25068-38-6	$>=5-<10$
	(Part B) m-phenylenebis(methylamine)	1477-55-0	$>=5-<10$
	(Part B) Phenol, 4-nonyl-, branc hed	84852-15-3	$>=1-<5$
	(Part B) 2,4,6-tris(dimethyla minomethyl)phenol	90-72-2	$>=1-<5$
	(Part B) 2,2,4(or 2,4,4)-trimethylhexane-1,6-dia mine	25513-64-8	$>=1-<5$
Sika floor®-261 ${ }^{\text {ca }}$	(Part A) bisphenol-A-(epichlorhydrin) epoxy resin	25068-38-6	$>=30-<40$
	(Part A) bisphenol-F-(epichlorhydrin) epoxy resin	28064-14-4	$>=2-<5$
	(Part A) oxirane, mono[(C12-14alkyloxy)methyl]derivatives	68609-97-2	$>=2-<5$
	(Part A) bisphenol-F-(epichlorhydrin) epoxy resin	9003-36-5	$>=1-<2$
	(Part A) p-tert-butylphenyl 1-(2,3-epoxy)propyl ether	3101-60-8	$>=1-<2$
	(Part B) Benzyl a lcohol	100-51-6	$>=40-<50$
	(Part B) Isophoronedia mine	2855-13-2	$>=10-<20$
	(Part B) m-phenylenebis(methylamine)	1477-55-0	$>=10-<20$
	(Part B) bisphenol-A-(epic hlorhydrin) epoxy resin	25068-38-6	$>=10-<20$
	(Part B) ethanol	64-17-5	$>=5-<10$
	(Part B) Phenol, 4-nonyl-, branched	84852-15-3	$>=5-<10$
	(Part B) 2,4,6-tris(dimethyla minomethyl)phenol	90-72-2	$>=2-<5$
	(Part B) 2-propenenitrile, reaction products with 2,2,4(or 2,4,4)-trimethyl-1,6-hexa nedia mine (TMD cyanethylated)	90530-20-4	$>=1-<2$
	(Part B) 2,2,4(or 2,4,4)-trimethylhexane-1,6-diamine	25513-64-8	$>=0-<1$

Components	Ingredient ${ }^{1}$	CASNO.	Concentration (\%w/w)
Sika floor®-270 ESD	(Part A) bisphenol-F-(epic hlormydrin) epoxy resin	28064-14-4	$>=50-<60$
	(Part A) Quartz (SiO2)	14808-60-7	$>=5-<10$
	(Part A) bisphenol-A-(epic hlorhydrin) epoxy resin	25068-38-6	$>=2-<5$
	(Part A) bisphenol-F-(epic hlormydrin) epoxy resin	9003-36-5	$>=0-<1$
	(Part A) p-tert-butylphenyl 1-(2,3-epoxy)propyl ether	3101-60-8	$>=0-<1$
	(Part B) Benzyl a lcohol	100-51-6	$>=40-<50$
	(Part B) Formaldehyde, polymer with benzenamine, hydrogenated	$\begin{aligned} & 135108-88- \\ & 2 \end{aligned}$	$>=25-<35$
	(Part B) Aliphatic Amines	Not Assigned	$>=5-<10$
	(Part B) 2,4,6-tris(dimethyla minomethyl)phenol	90-72-2	$>=2-<5$
	(Part B) cyclohex-1,2-ylenedia mine	694-83-7	$>=2-<5$
	(Part B) 4,4'-methylenebis(cyc lohexyla mine)	1761-71-3	$>=2-<5$
Sika floor®-304 W NA/Sika floor ${ }^{\circledR}$-305 W NA	(Part B) Aliphatic polyisocyanate	28182-81-2	$>=90-<=100$
	(Part B) polyethyleneglycol tridec yl ether phosphate (Average EO =3-10 mol)	9046-01-9	$>=2-<5$
	(Part B) N,N-dimethylc yc lohexa na mine	98-94-2	$>=1-<2$
	(Part B) hexa methylene-di-iso cyanate	822-06-0	$>=0-<1$
Sika floor®-31 NA PurCem ${ }^{\circledR}$	(Part A) butane-1,4-diol	110-63-4	$>=1-<5$
	(Part B) Formaldehyde, oligomeric reaction products with aniline and phosgene	32055-14-4	$>=90-<=100$
	(Part C) Portland cement	65997-15-1	$>=50-<100$
	(Part C) Quartz (SiO2) $<5 \mu \mathrm{~m}$	14808-60-7	$>=0.1-<1$
Sika floor®-33 NA PurCem ${ }^{\circledR}$	(Part A) butane-1,4-diol	110-63-4	$>=2-<5$
	(Part B) Aliphatic polyisocyanate	28182-81-2	$>=90-<=100$
	(Part B) bis(1,2,2,6,6-penta methyl-4-piperidyl) sebacate	41556-26-7	$>=0-<1$
	(Part B) hexa methylene-di-iso cyanate	822-06-0	$>=0-<1$
	(Part B) methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate	82919-37-7	$>=0-<1$
	(Part C) Quartz (SiO2)	14808-60-7	$>=40-<50$
	(Part C) Calc ium hydroxide	1305-62-0	$>=20-<25$
	(Part C) Quartz (SiO2) $<5 \mu \mathrm{~m}$	14808-60-7	$>=10-<20$
Sika floor ${ }^{\text {®-33 }} 3$	(Part A) 2-ethylhexa ne-1,3-diol	94-96-2	$>=1-<2$
	(Part B) 4,4'-methylenediphenyl diisocyanate	101-68-8	$>=50-<60$
	(Part B) Aromatic iso cyanate-prepolymer	9048-57-1	$>=40-<50$
Sikafloore-52 PC Grey	Portland cement	65997-15-1	$>=10-<20$
	Quartz (SiO2)	14808-60-7	$>=10-<20$
	Quart (SiO2) < $<$ mm	14808-60-7	$>=0.1-<1$
Sikafloor®-53 PC White	Quartz (SiO2)	14808-60-7	$>=25-<50$
	Portland cement	65997-15-1	$>=20-<25$
	Quartz (SiO2) $<5 \mu \mathrm{~m}$	14808-60-7	$>=2-<5$

Components	Ingredient ${ }^{1}$	CAS No.	Concentration (\%w/w)
Sikalastic ${ }^{\text {® }}-120$ FS Primer	(Part A) bisphenol-A-(epic hlorhydrin) epoxy resin	25068-38-6	$>=55-<=65$
	(Part A) bisphenol-F-(epichlorhydrin) epoxy resin	28064-14-4	$>=10-<20$
	(Part A) oxirane, mono[(C12-14a lkyloxy)methyl]derivatives	68609-97-2	$>=10-<20$
	(Part B) Benzyl a lcohol	100-51-6	$>=40-<50$
	(Part B) m-phenylenebis(methylamine)	1477-55-0	$>=10-<20$
	(Part B) 2-piperazin-1-ylethyla mine	140-31-8	$>=10-<20$
	(Part B) 2,4,6-tris(dimethyla minomethyl)phenol	90-72-2	$>=5-<10$
	(Part B) 4,4'-isopropylidenediphenol	80-05-7	$>=5-<10$
	(Part B) Phenol, 4-nonyl-, branched	84852-15-3	$>=3-<5$
	(Part B) Salic ylic acid	69-72-7	$>=3-<5$
	(Part B) Isophoronediamine	2855-13-2	$>=2-<3$
	(Part B) Benzyld imethyla mine	103-83-3	$>=1-<2$
	(Part B) bis[(dimethyla mino)methyl]phenol	71074-89-0	$>=1-<2$
Sika lastic ${ }^{\circledR}-220 \mathrm{FS}$	(Part A) bisphenol-A-(epichlorhydrin) epoxy resin	25068-38-6	$>=80-<=90$
	(Part A) solvent naphtha (petroleum), heavy arom.	64742-94-5	$>=5-<10$
	(Part A) bisphenol-F-(epichlorhydrin) epoxy resin	9003-36-5	$>=1-<2$
	(Part A) p-tert-butylphenyl 1-(2,3-epoxy)propyl ether	3101-60-8	$>=1-<2$
	(Part A) naphtha lene	91-20-3	$>=0-<1$
	(Part B) Phenol, 4-nonyl-, branched	84852-15-3	$>=50-<60$
	(Part B) Benzyl a lcohol	100-51-6	$>=10-<20$
	(Part B) m-phenylenebis(methylamine)	1477-55-0	$>=5-<10$
	(Part B) 1,5-Dia mino-2-methylpentane	15520-10-2	$>=5-<10$
	(Part B) Polyoxypropylenedia mine (polymer)	9046-10-0	$>=5-<10$
	(Part B) 2,4,6-tris(dimethyla minomethyl)phenol	90-72-2	$>=3-<5$
	(Part B) 4-tert-Butylphenol	98-54-4	$>=3-<5$
	(Part B) Trimethylhexa methylenedia mine	25620-58-0	$>=0.1-<1$
Sikalastic ${ }^{\circledR}$-390 Membrane	ethylbenzene	100-41-4	$>=0-<1$
Sika la stic ${ }^{\circledR}$-391 N	4,4'-methylenediphenyl diisoc ya nate	101-68-8	$>=40-<50$
	Diphenylmethanediisocyanate, isomeres and homologues	9016-87-9	$>=35-<45$
	o-(p-isocya na tobenzyl)phenyl isocyanate (MDI)	5873-54-1	$>=20-<25$

3. Scope of EPD

3.1. Functional unit

The functional unit of this cradle-to-grave EPD is defined asfollows:

One square meter ($\mathbf{1} \mathrm{m}^{2}$) of covered and protected flooring surface for a period of 60 years

To determine the amount of product needed to satisfy the functional unit, a service life is estimated. The values for the resinous and cementitious flooring systems are reported in Table 3. For each floor system, there are at least two different senvice life values: a technical service life, for which coating systems are designed for, and a market service life, a typical period after which users replace coating systems. Then, these values may differ depending on the applic ation, whether it is commercial or industrial.

Table 3: Estimated senvice life in years

3.2. System boundaries

This cradle-to-grave LCA includes modules related to the production, construction, use, and end-of-life stagesas shown in Table 4 and desc ribed in this section. All modules required by the PCR for resinous floor coatings from NSF were included. Figure 2 on page 19 shows the cradle-to-grave processes for resinous and cementitious floor coating systems included in this EPD.

Table 4: Life cycle stages included or not considered in the system boundaries

Production stage			Construction stage		Use stage							End-of-life stage				
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
		Manufacturing			$\frac{8}{3}$		$$			o 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & 8 \\ & \frac{8}{2} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Waste processing	$\begin{aligned} & \overline{\mathbb{O}} \\ & 0 \\ & \text { O } \\ & \overline{\hat{0}} \end{aligned}$	
x	\mathbf{x}	\mathbf{x}	X	X	X	X	X	X	X	X	X	x	X	X	x	$\frac{0}{\Sigma}$

Legend:
X : considered in the system boundaries
MND: Module not declared

A1 - RAW MATERIALSUPPLY

Coatings are composed of components made of many different ingredients (intermediate materials), such as epoxy for resinous components or cement and sand for cementitious components. They are manufactured in other parts of Canada, United States, Europe, South America, Asia and Australia. This module includesthe production of the ingredients needed forthe mixing at the Sika plants, including raw material extraction and transformation, and energy production.

A2 - TRANSPORTTO MANUFACTURING PLANTS

Materials a re transported from suppliers to the Sika's manufacturing plants by truck, and boat if shipped from oversees. This module includes the transport air emissions as well as fuel, vehic le, and infrastructure production. Primary data on transportation distances and modes were used.

A3- MANUFACTURING

This module covers the manufacturing of coating components, in liquid or powder form.
Once delivered to the Sika manufacturing plant, liquid materials for resinous components are stored until their use. Then, materials are mixed together in a tank according to a recipe. The mix goes under quality control, is packed in polyethylene (PE) or metallic pails and stored until shipping. Cardboard is also used forpackaging.
The manufacturing of cementitious components involves mainly powders. Powder ingredients are shipped to the Sika plant and stored until their use. Then, materials are mixed together with a powder mixer according to a recipe. The result goes under quality control, is packed in paperbags, and stored until shipping. Cardboard is also used during packaging.
Elec tric ity is the main source of energy used at the manufacturing plant. In Quebec and British Columbia, the electricity grid mix is mainly composed of hydroelectricity. Natural gas is used for heating.
Most of the liquid waste is generated at the mixing stations and is mainly sent to incineration. Solid waste (powders) is generated at the mixer and is mainly sent to recycling.

This module also includes the production and transport of primary packaging for the final products. Sika products are sold in a variety of packaging asdescribed in Table 5.

Table 5: Packaging desc ription

Packaging type	End-of-life treament	Mass (in kg)	Source	Biogenic carbon content** (kg C)
Paperbag (contains 25 kg)	Landfill	0.10	Estimated	0.05
Paperbag (contains 25 kg)	Landfill	0.11	Estimated	0.055
Cardboard box (contains $4 \times 4 \mathrm{l}$)	Landfill	0.42	Estimated	0.21
Metallic can (3.78 I)	Landfill*	0.43	Estimated	0
PE canister (4)	Landfill	0.5	Estimated	0
PEpail (10 I)	Landfill	1.0	Manufacturer	0
PEpail (201)	Landfill	1.5	Manufacturer	0
PE pail (5 I)	Landfill	0.5	Manufacturer	0
Metallic pail (12 I)	Landfill*	0.77	Manufacturer	0
Metallic pail (15I)	Landfill*	0.88	Manufacturer	0
Metallic pail (21)	Landfill*	1.13	Manufacturer	0
Metallic pail (7.56I)	Landfill*	0.59	Estimated	0
PE sleeve	Landfill	0.13	Estimated	0

* Metallic containers may be recycled at the construction site, especially in a LEED project. However, it was judge that it would not be a representative case of how this packaging waste is usually treated.
** Source: ecoinvent (default 50 \%C-content assumption)

A4 - Transport to site

Coating components, including their packaging, are transported from the manufacturing plant to their distributor wa rehouse and project sites by truck. This module includes the transport air emissions as well as fuel, vehicle, and infrastructure production. The default PCR transportation modes and distances were used.

A5 - Installation

For the resinous and cementitious flooring systems, this module includes installing the floor coating system by applying the components on a floor substrate one after a nother. Each coat requires curing time, during which it is assumed that VOC content is emitted to air.

A small amount of product is not used and becomes waste. The production of this waste amount (modulesA1 to A4) is included in this module, but not itsdisposal, in conformance with the PCR forresinous floor coatings. The disposal of product packaging is included in this module.

B1 - Use
Once the product is cured, the use stage starts. No impacts associated to this module have been calculated.

B2 - Maintenance

Although maintenance requirements can signific antly vary between systems, the same regularcleaning wasconsidered based on assumptions from the PCR for the resinous and cementitious flooring systems. It includes the production of the cleaning product.

B3-Repair / B4 - Replacement / B5 - Refurbishment

It was assumed that repairs (module B3) are negligible during the whole product service lifetime and were therefore not considered for a ny system.

Recoats are needed to reach the 60-yearbuilding lifetime defined by the functional unit. Impacts of the replacement scenarios described in Table 6 for each system were calculated the same way as in the production and construction stages (A1 to A5 modules).

Table 6: Replacement scenarios of the resinous and cementitious flooring systems

System	Replacementscenario
Sika Comfortfoor ${ }^{\text {® }}$	Additional new top coat
Sika ComfortPoor ${ }^{\otimes}$ Pro	Additional new top coat
Sikafloor ${ }^{\circledR}$ Decoflake ${ }^{\circledR}$	Additional new top coat
Sikafloor ${ }^{\circledR}$ ESD Control	Entire recoat
Sikafloor ${ }^{\circledR}$ Fastfor ${ }^{\circledR}$ CR	Additional new top coat
Sikafloor ${ }^{\circledR}$ Monitex	Additional new top coat
Sikafloor ${ }^{\circledR}$ PurCem ${ }^{\circledR}$	Additional new top coat
Sikafloor ${ }^{\text {® }}$ Quartzite ${ }^{\text {® }}$	Additional new top coat
Sikafloor ${ }^{\text {® }}$ Resoclad MRW Type II	Additional new top coat
Sikafloor ${ }^{\circledR}$ Terrazzo	Refresh polish and overcoat with new top coat
Sikafloor®-52 PC	Refresh polish and overcoat with new top coat
Sikafloor®-53 PC	Refresh polish and overcoat with new top coat
Skalastic ${ }^{\text {® }}$-3900 Traffic	Additional new top coat
Sikafloor ${ }^{\text {® }}$ Smooth Epoxy	Additional new top coat

No impact was reported in module B5, since no refurbishment takesplace.
B6-Operational energy use and B7 - Operational water use
No impact was reported in these modules, since the floor systems consume neither energy nor water.

C1 - Deconstruction/demolition

It is considered that no impact from the deconstruction or demolition are attributable to the studied products since it is not likely to be separated from the substrate and recovered from deconstruction or demolition waste.

C2 - WASTE TRANSPORT

Applied coatings are transported to landfill as well as water-based unused coatings from installation (A5 and B1) and replacements (B4). Unused solvent-based coatings from these modules are sent to inc ineration for energy recovery. This module includes the transport air emissions as well as fuel, vehicle, and infrastructure production. The default PCR transportation modes and distances were used.

Figure 2: Process flow for all life cycle modules considered

C3 - Waste processing

All unused solvent-based coatingsfrom the A5 and B4 modulesare assumed to be incinerated forenergy recovery at theirend of life. Creditsforenergy recovery are considered negligible and are not accounted for in module D.

C4 - DISPOSAL
All applied coatings are assumed to be sent to landfill as well as unused water-based coatings from the A5 and B4 modules.

3.3. Geographical and temporal boundaries

The geographical boundaries are representative of current equipment and processes associated with resinous and cementitious floor coating system manufacturing, use and disposal in Canada. Since the data were collected for the year 2017, they are considered temporally representative (i.e. less than 5 years old). All data were modelled using the ecoinvent 3.4 database released in 2017 (ecoinvent, 2017), which meetsthe PCR requirements. A weighed average of production volume at each location isutilized forcalculation puposes.

4. Potential environmental impacts assessment

This cradle-to-grave life cycle assessment has been conducted according to ISO 14040 and 14044 standards and the PCR for Resinous Floor Coatings (NSF, 2018). Potential environmental impacts were calculated with the impact assessment method TRACI 2.1 (US EPA, 2012). The description of these indic ators reported are provided in the glossary (section 6.2).

4.1. Assumptions

When specific data was not a vailable, generic data which fulfilled the minimum criteria of the PCR were used. The ecoinvent database v3.4 recycled content allocation served as the main source of secondary data. It should be noted that most, though not all, of the data within ecoinvent is of European orig in and developed to represent European industrial conditions and processes. Therefore, in some cases, these moduleswere furtheradapted in order to enhance their representativeness of the products and contexts being examined. However, in the recent updates of the ecoinvent database, a lot of efforts have been put into creating market groups for regions, countries and products. Other assumptions included in this LCA were related to raw material modelling, colours and transportation.

4.2. Criteria for the exclusion of inputs and outputs

Processes or elementary flows may be excluded if the life cycle inventory (LCI) data amounts to a minimum of 95% of total inflows in terms of mass and energy to the upstream and core module. The following processes were excluded from the study due to their expected low contribution and the lack of readily a vailable data:

- Personnel impacts
- Research and development activities
- Businesstravel
- Any secondary packaging
- All point of sale infrastructure
- Coating applicator

4.3. Data quality

Data sources
Specific data were collected from Sika Canada for operationsoccuring in 2017 (less than 5 years old). Generic data collected for the upstream and downstream stages were representative of the Conadian context and technologies used.

The LCA model was developed with the SimaPro 8.5 software using ecoinvent 3.4 database, which was released in 2017 (less than 2 years). Since most of the data within ecoinvent is of European origin and produced to represent European industrial conditions and processes, several data were adapted to enhance their representativeness of the products and contexts being assessed.

Data quality

The overall data quality ratings show that the data used were good. This data quality assessment confirms the high reliability, representativeness (technological, geographical and time-related), completeness, a nd consistency of the information and data used for this study.

4.4. Allocation

Allocation of multi-output processes
When unavoidable allocation was done by mass, or other physical relationship. Economic value a llocation was not used.

Allocation at Sika's manufacturing plant
Sika's plants produce many different products, including several that are not part of the scope of this study. Product ingredients were available foreach product and did not need to be allocated. However, general inputssuch aselectric ity, naturalgas, and waterwere allocated based on the production volume in tonnes. Percentages were calculated by the ma nufac turers through the data collection.

Allocation for end-of-life processes
As stated in the PCR, a recycled content approach (i.e. cut-off approach) was applied when a product is recycled. The impacts associated with the recycling process are thus attributed to the products using these materials.
ecoinvent processes with allocation
Many of the processes in the ecoinvent database also provide multiple functions, and allocation is required to provide inventory data perfunction (orperprocess). Thisstudy a cceptsthe allocation method used by ecoinvent for those processes. The ecoinvent system model used was "Allocation, cut-off". It should be noted that the allocation methodsused in ecoinvent forbackground processes (i.e. processes representing the complete supply chain of a good or service used in the life cycle of a floor covering system) may be inconsistent with the approach used to model the foreground system (i.e. to model the manufacturing of a floor covering system with data collected in the literature and from manufacturers). While this allocation is appropriate for foreground processes, continuation of this methodology into the background datasets would add complexity without substantially improving the quality of the study.

4.5. Life cycle impact assessment - results

The following tables (6 to 59) present the results for $1 \mathrm{~m}^{2}$ of floor coating systems over the production, use, and end-of-life stages (A to C) according to each estimated service life in Table 3. Cradle-to-gate results (modules A1 to A3) of individual components are presented in a ppendix.

Table 7
Product: Sika ComfortFoor® ${ }^{\circledR}$ Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor coating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADPfosi,M Abiotic depletion potential for fossil resourcesused as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values

Table 8

Product: Sika ComfortFoor ${ }^{\circledR}$ Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technic al servic e life: $\mathbf{3 0}$ years

ADP fossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared.
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 9
Product: Sika ComfortFoor ${ }^{\circledR}$ Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADP fossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared.
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 10
Product: Sika ComfortFoor ${ }^{\circledR}$ Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technic al service life: $\mathbf{1 5}$ years

ADPfossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ ". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared.
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 11

Product: Sika ComfortFoor ${ }^{\circledR}$ Pro Application: commercial and industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market and technic al service life: $\mathbf{3 0}$ years

ADPfossil,M Abiotic depletion potential for fossil resources used as materials
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 12

Product: Sika Comfortfoor ${ }^{\circledR}$ Pro Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: 60 years

ADPfossil, Abiotic depletion potential for fossil resourcesused as materials
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 13

Product: Sika ComfortFoor ${ }^{\circledR}$ Pro Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

Indicators	Units	Total	A1-3	A4	A5	B1	B2	B3	B4	B5	B6	87	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	4.77E+1	4.29E+1	$1.45 \mathrm{E}+0$	9.16E-1	0	1.16E+0	0	1.23E+0	0	0	0	0	7.60E-2	0	2.74E-3
AP	kg SO 2 eq .	$2.36 \mathrm{E}-1$	$2.08 \mathrm{E}-1$	9.80E-3	$4.48 \mathrm{E}-3$	0	$6.40 \mathrm{E}-3$	0	7.73E-3	0	0	0	0	4.36E-4	0	2.62E-6
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	$1.11 \mathrm{E}-1$	9.42E-2	2.06E-3	2.17E-3	0	$8.53 \mathrm{E}-3$	0	$4.00 \mathrm{E}-3$	0	0	0	0	6.24E-5	0	2.90E-4
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	3.16E+0	2.55E+0	$2.64 \mathrm{E}-1$	$1.52 \mathrm{E}-1$	0	5.84E-2	0	$1.17 \mathrm{E}-1$	0	0	0	0	$1.19 \mathrm{E}-2$	0	6.07E-5
ODP	kg CFC-11 eq.	1.37E-6	8.04E-7	3.47E-7	$2.78 \mathrm{E}-8$	0	$6.14 \mathrm{E}-8$	0	$1.08 \mathrm{E}-7$	0	0	0	0	1.83E-8	0	$1.16 \mathrm{E}-10$
Resource use																
NRPRE	MJ	$6.06 \mathrm{E}+2$	5.40E+2	2.21E+1	$1.16 \mathrm{E}+1$	0	$1.83 \mathrm{E}+1$	0	$1.31 \mathrm{E}+1$	0	0	0	0	1.09E+0	0	$2.84 \mathrm{E}-1$
NRPRM	kg	6.99E+0	6.59E+0	0	$1.32 \mathrm{E}-1$	0	0	0	$2.68 \mathrm{E}-1$	0	0	0	0	0	0	0
RPRE	MJ	$3.72 \mathrm{E}+1$	$2.88 \mathrm{E}+1$	3.16E-1	$6.40 \mathrm{E}-1$	0	6.26E+0	0	1.12E+0	0	0	0	0	5.14E-3	0	7.29E-3
RPRM	kg	$2.89 \mathrm{E}-1$	$1.34 \mathrm{E}-2$	0	$2.69 \mathrm{E}-4$	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDwps	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	5.08E+2	$4.48 \mathrm{E}+2$	2.17E+1	$9.72 \mathrm{E}+0$	0	$1.65 \mathrm{E}+1$	0	1.12E+1	0	0	0	0	$1.08 \mathrm{E}+0$	0	$2.79 \mathrm{E}-1$
ADP ${ }_{\text {fossil, }}$ M	kg	6.99E+0	6.59E+0	0	$1.32 \mathrm{E}-1$	0	0	0	$2.68 \mathrm{E}-1$	0	0	0	0	0	0	0
SM	kg	$2.75 \mathrm{E}+0$	$2.70 \mathrm{E}+0$	0	$5.40 \mathrm{E}-2$	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$1.03 \mathrm{E}+0$	8.61E-1	4.51E-3	$1.77 \mathrm{E}-2$	0	$1.28 \mathrm{E}-1$	0	2.11E-2	0	0	0	0	1.34E-4	0	3.14E-4
Waste*																
HWD	kg	6.36E-3	$2.08 \mathrm{E}-3$	0	4.16E-5	0	0	0	4.24E-3	0	0	0	0	0	0	0
NHWD	kg	$2.32 \mathrm{E}+0$	0	0	$4.53 \mathrm{E}-1$	0	0	0	2.72E-2	0	0	0	0	0	0	$1.84 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IWRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP G	Global warming potential (GWP ${ }_{100}$)					SM Sec		Secondary materials				B1 Use				
AP A	Acidific ation potential					RSF Re		Renewable secondary fuels				B2	Maintenance			
EP Eut	Eutrophication potential					NRSF N		Non-renewable secondary fuels				B3	Repair			
SFP S	Smog formation potential					FW C		Consumption of fresh water				B4	Replacement			
ODP O	Ozone depletion potential					HWD H		Hazardous waste disposed				B5	Refurbishment			
NRPRE ${ }_{\text {E }}$	Non-renewable primary resources used as an energy camier						NHWD N	Non-hazardous waste disposed				B6	Operational energy use			
NRPRM	Non-renewable primary resources with energy content used as a material						HLRW Hit	High-level radioactive waste				B7	Operational water use			
RPRE R	Renewable primary resources used as an energy camier						ILRW In	Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM R	Renewable primary resources with energy content used as a materialRecovered energy from disposal of waste in previous systems					A1-3 P		Production stage				C2	Transport			
REDwps R						A4 $\begin{array}{ll}\text { A5 } & \text { Tra } \\ \end{array}$		Transport to site				C3	Waste processing			
$\mathrm{ADP}_{\text {fossil, }}$ A	Abiotic depletion potential for fossil resources used as energy							Installation				C4	Disposal			

ADP fossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " " means " $\times 10 \pm$ ". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems|Environmental Product Declaration (EPD) \#2068-2738

Table 14
Product: Sikafloor ${ }^{\circledR}$ Decoflake ${ }^{\circledR}$ System Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADP ${ }_{\text {fossi,M }}$ Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsforlife cycle assessmentsand environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 15

Product: Sikafloor ${ }^{\circledR}$ Dec oflake ${ }^{\circledR}$ System Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{3 0}$ years

Indicators	5 Units	Total	A1-3	A4	A5	B1	B2	83	B4	B5	B6	B7	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	1.73E+1	1.29E+1	6.16E-1	$2.79 \mathrm{E}-1$	0	1.16E+0	0	2.24E+0	0	0	0	0	8.10E-2	4.60E-2	$1.22 \mathrm{E}-3$
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	8.73E-2	6.51E-2	4.14E-3	$1.40 \mathrm{E}-3$	0	$6.40 \mathrm{E}-3$	0	9.74E-3	0	0	0	0	$4.64 \mathrm{E}-4$	3.85E-6	$1.30 \mathrm{E}-6$
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	$5.35 \mathrm{E}-2$	3.48E-2	8.80E-4	8.87E-4	0	$8.53 \mathrm{E}-3$	0	8.18E-3	0	0	0	0	$6.65 \mathrm{E}-5$	8.49E-6	$1.27 \mathrm{E}-4$
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	$1.29 \mathrm{E}+0$	7.09E-1	1.11E-1	2.41E-1	0	5.84E-2	0	$1.63 \mathrm{E}-1$	0	0	0	0	1.27E-2	$1.15 \mathrm{E}-4$	3.03E-5
ODP	kg CFC-11 eq.	$1.68 \mathrm{E}-6$	1.11E-6	1.47E-7	$2.57 \mathrm{E}-8$	0	$6.14 \mathrm{E}-8$	0	$3.21 \mathrm{E}-7$	0	0	0	0	$1.95 \mathrm{E}-8$	4.04E-11	5.90E-11
Resource use																
NRPRE	MJ	2.18E+2	$1.58 \mathrm{E}+2$	9.37E+0	3.40E+0	0	$1.83 \mathrm{E}+1$	0	$2.75 \mathrm{E}+1$	0	0	0	0	1.16E+0	3.61E-3	$2.97 \mathrm{E}-1$
NRPRM	kg	2.95E+0	$2.47 \mathrm{E}+0$	0	4.94E-2	0	0	0	4.27E-1	0	0	0	0	0	0	0
RPRE	MJ	$1.78 \mathrm{E}+1$	9.41E+0	1.35E-1	$1.96 \mathrm{E}-1$	0	$6.26 \mathrm{E}+0$	0	1.77E+0	0	0	0	0	$5.47 \mathrm{E}-3$	1.12E-4	$7.63 \mathrm{E}-3$
RPRM	kg	$2.80 \mathrm{E}-1$	5.22E-3	0	$1.04 \mathrm{E}-4$	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDups	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	$1.89 \mathrm{E}+2$	$1.34 \mathrm{E}+2$	9.22E+0	2.92E+0	0	$1.65 \mathrm{E}+1$	0	2.49E+1	0	0	0	0	1.16E+0	3.52E-3	2.93E-1
ADP ${ }_{\text {fossil, }}$ M	kg	$2.95 \mathrm{E}+0$	$2.47 \mathrm{E}+0$	0	4.94E-2	0	0	0	4.27E-1	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$3.41 \mathrm{E}-1$	1.77E-1	1.92E-3	3.60E-3	0	$1.28 \mathrm{E}-1$	0	3.01E-2	0	0	0	0	$1.43 \mathrm{E}-4$	$3.47 \mathrm{E}-6$	$3.29 \mathrm{E}-4$
Waste*																
HWD	kg	3.34E-2	$2.69 \mathrm{E}-2$	0	5.38E-4	0	0	0	5.92E-3	0	0	0	0	0	0	0
NHWD	kg	2.02E+0	0	0	$6.46 \mathrm{E}-2$	0	0	0	$1.19 \mathrm{E}-2$	0	0	0	0	0	0	$1.94 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IШRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP	Global warming potential (GWP_{100})					SM Se		Secondary materials				B1	Use			
AP	Acidification potential						RSF Re	Renewable secondary fuels				B2	Maintenance			
EP							NRSF No	Non-renewable secondary fuels				B3	Repair			
SFP	Smog formation potential						FW Con	Consumption of fresh water				B4	Replacement			
ODP	Ozone depletion potential						HWD Ha	Hazardous waste disposed				B5	Refurbishment			
NRPRE	Non-renewable primary resources used as an energy camier						NHWD No	Non-hazardous waste disposed				B6	Operational energy use			
NRPRM	Non-renewable primary resources with energy content used as a material						HLRW Hig	High-level radioactive waste				B7	Operational water use			
RPRE	Renewable primary resources used as an energy camier						IШRW Int	Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM	Renewable primary resources with energy content used as a material						A1-3 Prod	Production stage				C2	Transport			
RE ${ }_{\text {dwps }}$	Recovered energy from disposal of waste in previous systems						A4 $\begin{aligned} & \text { A5 }\end{aligned}$	Transport to site				C3	Waste processing			
ADP fossil, $^{\text {E }}$	Abiotic depletion potential for fossil resourcesused as energy							Installation				C4	Disposal			
Note: " $\mathrm{E} \pm$ " means " $\times 10 \pm$ ". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared. should be derived from these reported values.																

Sika Canada | Sika Resinous \& Cementitious Flooring Systems | Environmental Product Declaration (EPD) \#2068-2738

Table 16

Product: Sikafloor ${ }^{\circledR}$ Decoflake ${ }^{\circledR}$ System Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADP ${ }_{\text {fossil,M }}$ Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsforlife cycle assessmentsand environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 17
Product: Sikafloor ${ }^{\circledR}$ Decoflake ${ }^{\circledR}$ System Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{1 5}$ years

ADPfossil, Abiotic depletion potential for fossil resources used as materials
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems|Environmental Product Declaration (EPD) \#2068-2738

Table 18

Product: Sikafloor ${ }^{\circledR}$ ESD C ontrol System Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADPfossi,M Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsforlife cycle assessmentsand environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 19

Product: Sikafloor ${ }^{\circledR}$ ESD C ontrol System Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{1 5}$ years

Indicators	5 Units	Total	A1-3	A4	A5	B1	B2	83	B4	B5	B6	B7	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	2.20E+1	4.87E+0	1.74E-1	$1.03 \mathrm{E}-1$	0	1.16E+0	0	1.54E+1	0	0	0	0	$2.06 \mathrm{E}-1$	$6.44 \mathrm{E}-2$	7.37E-3
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	$1.11 \mathrm{E}-1$	2.41E-2	1.17E-3	5.19E-4	0	$6.40 \mathrm{E}-3$	0	$7.74 \mathrm{E}-2$	0	0	0	0	$1.18 \mathrm{E}-3$	5.38E-6	5.89E-6
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	8.83E-2	1.91E-2	$2.47 \mathrm{E}-4$	3.93E-4	0	$8.53 \mathrm{E}-3$	0	5.91E-2	0	0	0	0	$1.69 \mathrm{E}-4$	$1.19 \mathrm{E}-5$	7.96E-4
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	1.69E+0	2.80E-1	3.15E-2	8.72E-2	0	5.84E-2	0	$1.20 \mathrm{E}+0$	0	0	0	0	3.23E-2	$1.61 \mathrm{E}-4$	$1.36 \mathrm{E}-4$
ODP	kg CFC-11 eq.	$2.71 \mathrm{E}-6$	5.96E-7	4.16E-8	$1.32 \mathrm{E}-8$	0	6.14E-8	0	$1.95 \mathrm{E}-6$	0	0	0	0	$4.95 \mathrm{E}-8$	5.65E-11	2.53E-10
Resource use																
NRPRE	MJ	2.81E+2	6.09E+1	$2.64 \mathrm{E}+0$	$1.31 \mathrm{E}+0$	0	$1.83 \mathrm{E}+1$	0	1.95E+2	0	0	0	0	2.96E+0	5.06E-3	$7.64 \mathrm{E}-1$
NRPRM	kg	3.51E+0	8.60E-1	0	$1.72 \mathrm{E}-2$	0	0	0	$2.63 \mathrm{E}+0$	0	0	0	0	0	0	0
RPRE	MJ	2.46E+1	4.45E+0	3.79E-2	9.57E-2	0	$6.26 \mathrm{E}+0$	0	1.37E+1	0	0	0	0	$1.39 \mathrm{E}-2$	$1.56 \mathrm{E}-4$	$1.96 \mathrm{E}-2$
RPRM	kg	$2.75 \mathrm{E}-1$	0	0	0	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDups	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	$2.57 \mathrm{E}+2$	$5.54 \mathrm{E}+1$	$2.60 \mathrm{E}+0$	$1.19 \mathrm{E}+0$	0	$1.65 \mathrm{E}+1$	0	1.77E+2	0	0	0	0	2.94E+0	4.93E-3	7.52E-1
ADP ${ }_{\text {fossil, }}$ M	kg	3.51E+0	8.60E-1	0	$1.72 \mathrm{E}-2$	0	0	0	2.63E+0	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$4.21 \mathrm{E}-1$	7.10E-2	5.41E-4	$1.47 \mathrm{E}-3$	0	$1.28 \mathrm{E}-1$	0	$2.19 \mathrm{E}-1$	0	0	0	0	$3.64 \mathrm{E}-4$	4.85E-6	$8.44 \mathrm{E}-4$
Waste*																
HWD	kg	$6.46 \mathrm{E}-2$	1.58E-2	0	3.17E-4	0	0	0	4.85E-2	0	0	0	0	0	0	0
NHWD	kg	5.15E+0	0	0	$4.74 \mathrm{E}-2$	0	0	0	$1.42 \mathrm{E}-1$	0	0	0	0	0	0	$4.96 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IШRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP	Global warming potential (GWP_{100})					SM Se		Secondary materials				B1	Use			
AP	Acidification potential						RSF Re	Renewable secondary fuels				B2	Maintenance			
EP	Eutrophication potential						NRSF No	Non-renewable secondary fuels				B3	Repair			
SFP	Smog formation potential						FW Con	Consumption of fresh water				B4	Replacement			
ODP	Ozone depletion potential						HWD Ha	Hazardous waste disposed				B5B6	Refurbishment			
NRPRE	Non-renewable primary resources used as an energy camier						NHWD No	Non-hazardous waste disposed					Operational energy use			
NRPRM	Non-renewable primary resources with energy content used as a material						HLRW H	High-level radioactive waste				B6 B7	Operational water use			
RPRE	Renewable primary resources used as an energy camier						ILRW In	Intermediate/low-level radioactive waste				B7 C 1	De-construction/Demolition			
RPRM	Renewable primary resources with energy content used asa material						A1-3 Pr	Production stage				$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	Transport			
RE ${ }_{\text {dwps }}$	Recovered energy from disposal of waste in previous systems						A4 $\begin{aligned} & \text { A5 }\end{aligned}$	Transport to site				C2 C3	Waste p	cessing		
ADP fossil, $^{\text {E }}$	Abiotic depletion potential for fossil resourcesused as energy							Installation				C3 C4	Disposal			
Note: " $\mathrm{E} \pm$ " means " $\times 10 \pm$ ". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared. should be derived from these reported values. \qquad																

Sika Canada | Sika Resinous \& Cementitious Flooring Systems|Environmental Product Declaration (EPD) \#2068-2738

Table 20
Product: Sikafloor ${ }^{\circledR}$ ESD Control System Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market and technic al service life: $\mathbf{5}$ years

ADPfossil, Abiotic depletion potential for fossil resources used as materials
*Significant data limitationscurrently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 21
Product: Skafloor ${ }^{\circledR}$ Fastflor ${ }^{\circledR}$ CR Broadcast Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor coating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADP fossi,M Abiotic depletion potential for fossil resourcesused as materials
Note: " $\mathrm{E} \pm$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 22
Product: Sikafloor ${ }^{\circledR}$ Fastfor ${ }^{\circledR}$ CR Broadcast Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{3 0}$ years

Indicators	Units	Total	A1-3	A4	A5	B1	B2	83	B4	B5	B6	87	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	$1.24 \mathrm{E}+1$	8.69E+0	5.97E-1	$1.90 \mathrm{E}-1$	0	1.16E+0	0	$1.65 \mathrm{E}+0$	0	0	0	0	7.57E-2	0	1.85E-3
AP	kg SO 2 eq .	$6.40 \mathrm{E}-2$	$4.38 \mathrm{E}-2$	4.02E-3	9.79E-4	0	6.40E-3	0	8.38E-3	0	0	0	0	4.34E-4	0	2.27E-6
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	5.06E-2	$3.39 \mathrm{E}-2$	8.52E-4	7.07E-4	0	8.53E-3	0	$6.37 \mathrm{E}-3$	0	0	0	0	6.21E-5	0	1.89E-4
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	8.01E-1	$4.85 \mathrm{E}-1$	1.08E-1	3.68E-2	0	5.84E-2	0	1.02E-1	0	0	0	0	$1.19 \mathrm{E}-2$	0	5.30E-5
ODP	kg CFC-11 eq.	1.62E-6	$1.15 \mathrm{E}-6$	$1.43 \mathrm{E}-7$	2.67E-8	0	$6.14 \mathrm{E}-8$	0	$2.24 \mathrm{E}-7$	0	0	0	0	1.82E-8	0	$1.05 \mathrm{E}-10$
Resource use																
NRPRE	MJ	$1.56 \mathrm{E}+2$	1.05E+2	9.07E+0	2.34E+0	0	1.83E+1	0	2.01E+1	0	0	0	0	1.09E+0	0	2.81E-1
NRPRM	kg	$1.91 \mathrm{E}+0$	1.59E+0	0	3.17E-2	0	0	0	2.97E-1	0	0	0	0	0	0	0
RPRE	MJ	1.51E+1	7.22E+0	$1.31 \mathrm{E}-1$	$1.58 \mathrm{E}-1$	0	6.26E+0	0	$1.35 \mathrm{E}+0$	0	0	0	0	5.12E-3	0	7.23E-3
RPRM	kg	$2.85 \mathrm{E}-1$	1.02E-2	0	$2.04 \mathrm{E}-4$	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDups	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	$1.42 \mathrm{E}+2$	9.47E+1	8.93E+0	2.13E+0	0	$1.65 \mathrm{E}+1$	0	1.82E+1	0	0	0	0	$1.08 \mathrm{E}+0$	0	$2.77 \mathrm{E}-1$
ADP ${ }_{\text {fossil, }}$ M	kg	$1.91 \mathrm{E}+0$	1.59E+0	0	3.17E-2	0	0	0	2.97E-1	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	2.81E-1	$1.25 \mathrm{E}-1$	1.86E-3	$2.60 \mathrm{E}-3$	0	$1.28 \mathrm{E}-1$	0	$2.29 \mathrm{E}-2$	0	0	0	0	1.34E-4	0	3.11E-4
Waste*																
HWD	kg	$2.65 \mathrm{E}-2$	2.20E-2	0	4.40E-4	0	0	0	4.12E-3	0	0	0	0	0	0	0
NHWD	kg	1.93E+0	0	0	7.99E-2	0	0	0	1.38E-2	0	0	0	0	0	0	$1.84 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IWRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP G	Global warming potential (GWP ${ }_{100}$)					SM Sec		Secondary materials				B1 Use				
AP A	Acidific ation potential					RSF Re		Renewable secondary fuels				B2	Maintenance			
EP Eut	Eutrophication potential					NRSF N		Non-renewable secondary fuels				B3	Repair			
SFP S	Smog formation potential					FW C		Consumption of fresh water				B4	Replacement			
ODP O	Ozone depletion potential					HWD H		Hazardous waste disposed				B5	Refurbishment			
NRPRE ${ }_{\text {E }}$	Non-renewable primary resourcesused as an energy camier					NHWD N		Non-hazardous waste disposed				B6	Operational energy use			
NRPRM	Non-renewable primary resources with energy content used asa material					HLRW H		High-level radioactive waste				B7	Operational water use			
RPRE R	Renewable primary resources used as an energy camier					ILRW In		Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM R	Renewable primary resources with energy content used as material					A1-3 Prod		Production stage				C2	Transport			
REDwps R	Recovered energy from disposal of waste in previous systems					A4 $\begin{array}{ll}\text { A5 } & \text { Tra } \\ \end{array}$		Transport to site				C3	Waste processing			
$\mathrm{ADP}_{\text {fossil, }}$ A	Abiotic depletion potential for fossil resources used as energy							Installation				C4	Disposal			

ADP fossil,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 23
Product: Sikafloor ${ }^{\circledR}$ Fastfior ${ }^{\circledR}$ CR Broadcast Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

Indicators	Units	Total	A1-3	A4	A5	B1	B2	B3	B4	B5	B6	87	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	$1.90 \mathrm{E}+1$	8.69E+0	5.97E-1	1.90E-1	0	1.16E+0	0	8.27E+0	0	0	0	0	1.24E-1	0	3.03E-3
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	$9.78 \mathrm{E}-2$	$4.38 \mathrm{E}-2$	4.02E-3	9.79E-4	0	$6.40 \mathrm{E}-3$	0	4.19E-2	0	0	0	0	7.12E-4	0	3.72E-6
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	7.63E-2	3.39E-2	8.52E-4	7.07E-4	0	$8.53 \mathrm{E}-3$	0	3.19E-2	0	0	0	0	1.02E-4	0	3.09E-4
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	$1.22 \mathrm{E}+0$	$4.85 \mathrm{E}-1$	$1.08 \mathrm{E}-1$	$3.68 \mathrm{E}-2$	0	$5.84 \mathrm{E}-2$	0	5.09E-1	0	0	0	0	$1.95 \mathrm{E}-2$	0	8.69E-5
ODP	kg CFC-11 eq.	$2.53 \mathrm{E}-6$	$1.15 \mathrm{E}-6$	$1.43 \mathrm{E}-7$	2.67E-8	0	6.14E-8	0	1.12E-6	0	0	0	0	2.98E-8	0	$1.72 \mathrm{E}-10$
Resource use																
NRPRE	MJ	$2.37 \mathrm{E}+2$	$1.05 \mathrm{E}+2$	9.07E+0	2.34E+0	0	1.83E+1	0	$1.00 \mathrm{E}+2$	0	0	0	0	$1.78 \mathrm{E}+0$	0	4.61E-1
NRPR ${ }_{\text {m }}$	kg	3.10E+0	1.59E+0	0	3.17E-2	0	0	0	$1.49 \mathrm{E}+0$	0	0	0	0	0	0	0
RPRE	MJ	$2.06 \mathrm{E}+1$	7.22E+0	$1.31 \mathrm{E}-1$	$1.58 \mathrm{E}-1$	0	6.26E+0	0	$6.77 \mathrm{E}+0$	0	0	0	0	8.39E-3	0	$1.18 \mathrm{E}-2$
RPR ${ }_{\text {M }}$	kg	$2.85 \mathrm{E}-1$	1.02E-2	0	$2.04 \mathrm{E}-4$	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDwps	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {e }}$	MJ	$2.16 \mathrm{E}+2$	9.47E+1	8.93E+0	2.13E+0	0	$1.65 \mathrm{E}+1$	0	$9.11 \mathrm{E}+1$	0	0	0	0	1.77E+0	0	4.55E-1
ADP fossil, $^{\text {m }}$	kg	3.10E+0	$1.59 \mathrm{E}+0$	0	3.17E-2	0	0	0	$1.49 \mathrm{E}+0$	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$3.73 \mathrm{E}-1$	$1.25 \mathrm{E}-1$	$1.86 \mathrm{E}-3$	$2.60 \mathrm{E}-3$	0	$1.28 \mathrm{E}-1$	0	1.14E-1	0	0	0	0	$2.19 \mathrm{E}-4$	0	5.10E-4
Waste*																
HWD	kg	4.30E-2	$2.20 \mathrm{E}-2$	0	4.40E-4	0	0	0	2.06E-2	0	0	0	0	0	0	0
NHWD	kg	3.16E+0	0	0	7.99E-2	0	0	0	$6.88 \mathrm{E}-2$	0	0	0	0	0	0	3.01E+0
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IWRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP G	Global warming potential (GWP_{100})Acidification potential					SM Se		Secondary materials				B1	Use			
AP A						RSF R		Renewable secondary fuels				B2	Maintenance			
EP Eut	Acidification potential					NRSF N		Non-renewable secondary fuels				B3	Repair			
SFP Sm	Smog formation potential					FW C		Consumption of fresh water				B4	Replacement			
ODP O	Ozone depletion potential					HWDNHWD		Hazardous waste disposed				B5	Refurbishment			
NRPRE ${ }_{\text {E }}$	Non-renewable primary resourcesused as an energy camier							Non-hazardous waste disposed				B6	Operational energy use			
NRPRM N	Non-renewable primary resources with energy content used as a material					HLRW His		High-level radioactive waste				B7	Operational water use			
RPRE R	Renewable primary resourcesused as an energy carier					ILRW In		Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM R	Renewable primary resources with energy content used asa materialRecovered energy from disposal of waste in previous systems					A1-3 Pr		Production stage				C2	Transport			
REDwps R						$\begin{array}{ll}\text { A4 } & \text { Tra } \\ \text { A }\end{array}$		Transport to site				C3	Waste processing			
ADP ${ }_{\text {fosil, }}$ E A	Recovered energy from disposal of waste in previous systemsAbiotic depletion potential forfossil resources used as energy							installation				C4	Disposal			

ADPfosi,M Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \pm$ " means " $\times 10 \pm$ "'. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 24
Product: Sikafloor ${ }^{\circledR}$ Fastfior ${ }^{\circledR}$ CR Broadcast Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technic al service life: $\mathbf{1 5}$ years

ADPfosi,M Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \pm$ " means " $\times 10 \pm$ "'. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared.
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 25
Product: Sikafloor ${ }^{\circledR}$ Fastflor ${ }^{\circledR}$ CR Smooth Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADPfosi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " " means " $\times 10 \pm$ ". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 26
Product: Sikafloor ${ }^{\circledR}$ Fastflor ${ }^{\circledR}$ CR Smooth Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technic al service life: $\mathbf{1 5}$ years

Indicators	Units	Total	A1-3	A4	A5	B1	B2	B3	B4	B5	B6	87	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	$1.28 \mathrm{E}+1$	3.69E+0	1.05E-1	7.75E-2	0	1.16E+0	0	7.63E+0	0	0	0	0	$1.19 \mathrm{E}-1$	0	5.90E-3
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	$6.54 \mathrm{E}-2$	$1.85 \mathrm{E}-2$	7.07E-4	3.93E-4	0	6.40E-3	0	3.87E-2	0	0	0	0	6.85E-4	0	$4.72 \mathrm{E}-6$
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	5.36E-2	$1.45 \mathrm{E}-2$	1.49E-4	2.97E-4	0	8.53E-3	0	$2.94 \mathrm{E}-2$	0	0	0	0	9.81E-5	0	$6.37 \mathrm{E}-4$
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	7.85E-1	$2.04 \mathrm{E}-1$	1.90E-2	$1.52 \mathrm{E}-2$	0	5.84E-2	0	4.70E-1	0	0	0	0	$1.88 \mathrm{E}-2$	0	$1.09 \mathrm{E}-4$
ODP	kg CFC-11 eq.	$1.65 \mathrm{E}-6$	4.89E-7	$2.50 \mathrm{E}-8$	$1.06 \mathrm{E}-8$	0	$6.14 \mathrm{E}-8$	0	1.03E-6	0	0	0	0	2.87E-8	0	2.03E-10
Resource use																
NRPRE	MJ	$1.60 \mathrm{E}+2$	4.44E+1	1.59E+0	$9.48 \mathrm{E}-1$	0	1.83E+1	0	$9.26 \mathrm{E}+1$	0	0	0	0	1.72E+0	0	$4.47 \mathrm{E}-1$
NRPRM	kg	2.07E+0	6.82E-1	0	$1.36 \mathrm{E}-2$	0	0	0	$1.37 \mathrm{E}+0$	0	0	0	0	0	0	0
RPRE	MJ	1.57E+1	3.08E+0	2.28E-2	$6.65 \mathrm{E}-2$	0	6.26E+0	0	$6.25 \mathrm{E}+0$	0	0	0	0	8.07E-3	0	$1.15 \mathrm{E}-2$
RPRM	kg	$2.75 \mathrm{E}-1$	0	0	0	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDups	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	$1.45 \mathrm{E}+2$	4.02E+1	1.57E+0	8.59E-1	0	$1.65 \mathrm{E}+1$	0	$8.41 \mathrm{E}+1$	0	0	0	0	1.70E+0	0	$4.40 \mathrm{E}-1$
ADP ${ }_{\text {fossil, }}$ M	kg	$2.07 \mathrm{E}+0$	$6.82 \mathrm{E}-1$	0	$1.36 \mathrm{E}-2$	0	0	0	1.37E+0	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$2.88 \mathrm{E}-1$	5.21E-2	3.26E-4	$1.08 \mathrm{E}-3$	0	$1.28 \mathrm{E}-1$	0	1.06E-1	0	0	0	0	2.11E-4	0	$4.94 \mathrm{E}-4$
Waste*																
HWD	kg	2.87E-2	$9.46 \mathrm{E}-3$	0	1.89E-4	0	0	0	1.90E-2	0	0	0	0	0	0	0
NHWD	kg	2.99E+0	0	0	3.22E-2	0	0	0	$6.35 \mathrm{E}-2$	0	0	0	0	0	0	$2.90 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IWRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP G	Global wa ming potential (GWP_{100})					SM Sec		Secondary materials				B1 Use				
AP A	Acidific ation potential					RSF Re		Renewable secondary fuels				B2	Maintenance			
EP Eut	Eutrophication potential					NRSF No		Non-renewable secondary fuels				B3	Repair			
SFP S	Smog formation potential					FW C		Consumption of fresh water				B4	Replacement			
ODP O	Ozone depletion potential					HWD H		Hazardous waste disposed				B5	Refurbishment			
NRPRE ${ }_{\text {E }}$	Non-renewable primary resourcesused as an energy camier					NHWD N		Non-hazardous waste disposed				B6	Operational energy use			
NRPRM	Non-renewable primary resources with energy content used asa material					HLRW Hig		High-level radioactive waste				B7	Operational water use			
RPRE R	Renewable primary resourcesused as an energy camier					ILRW In		Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM R	Renewable primary resources with energy content used asa materialRecovered energy from disposal of waste in previous systems					A1-3 Prod		Production stage				C2	Transport			
REDwps R						A4 \quad A5 \quad In		Transport to site				C3	Waste processing			
ADP fossil, $^{\text {E }}$	Abiotic depletion potential for fossil resources used as energy							Installation				C4	Disposal			

ADP fossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 27
Product: Sikafloor ${ }^{\circledR}$ Fastflor ${ }^{\circledR}$ CR Smooth Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market and technic al service life: $\mathbf{5}$ years

ADPfossi,M Abiotic depletion potential for fossil resourcesused as materials
Note: " $\mathrm{E} \pm$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 28
Product: Sikafloor ${ }^{\circledR}$ Monitex ${ }^{\circledR}$ trowelled Application: commercial and industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market and technic al service life: $\mathbf{3 0}$ years

Indicators	5 Units	Total	A1-3	A4	A5	B1	B2	83	B4	B5	B6	87	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	$1.49 \mathrm{E}+1$	9.46E+0	1.85E+0	$2.30 \mathrm{E}-1$	0	1.16E+0	0	2.09E+0	0	0	0	0	8.67E-2	0	4.29E-3
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	7.61E-2	4.42E-2	$1.24 \mathrm{E}-2$	$1.15 \mathrm{E}-3$	0	6.40E-3	0	$1.14 \mathrm{E}-2$	0	0	0	0	4.98E-4	0	3.43E-6
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	5.37E-2	3.36E-2	2.65E-3	7.33E-4	0	8.53E-3	0	7.64E-3	0	0	0	0	7.12E-5	0	4.63E-4
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	$1.35 \mathrm{E}+0$	$5.44 \mathrm{E}-1$	3.33E-1	2.04E-1	0	5.84E-2	0	1.97E-1	0	0	0	0	1.36E-2	0	7.90E-5
ODP	kg CFC-11 eq.	$2.09 \mathrm{E}-6$	1.24E-6	$4.42 \mathrm{E}-7$	$3.44 \mathrm{E}-8$	0	$6.14 \mathrm{E}-8$	0	$2.94 \mathrm{E}-7$	0	0	0	0	2.09E-8	0	$1.47 \mathrm{E}-10$
Resource use																
NRPRE	MJ	$1.91 \mathrm{E}+2$	$1.15 \mathrm{E}+2$	$2.81 \mathrm{E}+1$	2.92E+0	0	$1.83 \mathrm{E}+1$	0	$2.51 \mathrm{E}+1$	0	0	0	0	$1.25 \mathrm{E}+0$	0	3.25E-1
NRPRM	kg	2.26E+0	1.84E+0	0	3.68E-2	0	0	0	3.81E-1	0	0	0	0	0	0	0
RPRE	MJ	$1.68 \mathrm{E}+1$	7.83E+0	4.06E-1	$1.70 \mathrm{E}-1$	0	$6.26 \mathrm{E}+0$	0	2.09E+0	0	0	0	0	$5.86 \mathrm{E}-3$	0	8.37E-3
RPRM	kg	3.21E-1	4.47E-2	0	8.94E-4	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDwps	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	$1.76 \mathrm{E}+2$	1.04E+2	2.77E+1	$2.70 \mathrm{E}+0$	0	$1.65 \mathrm{E}+1$	0	2.27E+1	0	0	0	0	$1.24 \mathrm{E}+0$	0	$3.20 \mathrm{E}-1$
ADP frosil, $^{\text {M }}$	kg	$2.26 E+0$	1.84E+0	0	3.68E-2	0	0	0	3.81E-1	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$3.16 \mathrm{E}-1$	$1.46 \mathrm{E}-1$	$5.78 \mathrm{E}-3$	$3.07 \mathrm{E}-3$	0	$1.28 \mathrm{E}-1$	0	$3.30 \mathrm{E}-2$	0	0	0	0	$1.53 \mathrm{E}-4$	0	3.59E-4
Waste*																
HWD	kg	3.62E-2	$2.79 \mathrm{E}-2$	0	5.58E-4	0	0	0	7.73E-3	0	0	0	0	0	0	0
NHWD	kg	2.19E+0	0	0	7.58E-2	0	0	0	$1.15 \mathrm{E}-2$	0	0	0	0	0	0	$2.10 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IURW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP	Global warming potential (GWP ${ }_{100}$)					SM Se		Secondary materials				B1 Use				
AP	Acidification potential					RSF R		Renewable secondary fuels				B2	Maintenance			
EP						NRSF N		Non-renewable secondary fuels				B3	Repair			
SFP	Smog formation potential					FW C		Consumption of fresh water				B4	Replacement			
ODP	Ozone depletion potential					HWD H		Hazardous waste disposed				B5	Refurbishment			
NRPRE	Non-renewable primary resources used as an energy camer						NHWD N	Non-hazardous waste disposed				B6	Operational energy use			
NRPRM	Non-renewable primary resources with energy content used asa material					HLRWIШRWHigIn		High-level radioactive waste				B7	Operational water use			
RPRE	Renewable primary resources used as an energy camier							Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM	Renewable primary resources with energy content used as a materialRecovered energy from disposal of waste in previous systems						ILRW A1-3 P	on sta				C2	Transport			
RE ${ }_{\text {dwps }}$						A4 \quad Tras		Transport to site				C3	Waste processing			
ADP ${ }_{\text {fossil, }}$	Abiotic depletion potential for fossil resourcesused as energy					A5 Ins		Installation				C4	Disposal			

ADP fossi,M Abiotic depletion potential for fossil resourcesused as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 29
Product: Skafloor ${ }^{\circledR}$ Monitex ${ }^{\circledR}$ trowelled Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: 60 years

ADPfossil, M Abiotic depletion potential for fossil resources used as materials
Note: "E Y "" means " $\times 10 \pm$ "‘. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 30
Product: Sikafloor ${ }^{\circledR}$ Monitex ${ }^{\circledR}$ trowelled Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADPfosi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ ". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 31
Product: Sikafloor ${ }^{\circledR}$ Monitex ${ }^{\circledR}$ smooth and broadcast Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADP ${ }_{\text {fosil, M }}$ Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsforlife cycle assessmentsand environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 32

Product: Sikafloor ${ }^{\circledR}$ Monitex ${ }^{\circledR}$ smooth and broadcast Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{3 0}$ years

Sika Canada | Sika Resinous \& Cementitious Flooring Systems|Environmental Product Declaration (EPD) \#2068-2738

Table 33
Product: Sikafloor ${ }^{\circledR}$ Monitex ${ }^{\circledR}$ smooth and broadcast Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADP ${ }_{\text {fossil,M }}$ Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsfor life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems|Environmental Product Declaration (EPD) \#2068-2738

Table 34

Product: Sikafloor ${ }^{\circledR}$ Monitex ${ }^{\circledR}$ smooth and broadcast Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{1 5}$ years

ADP ${ }_{\text {fossil,M }}$ Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsfor life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 35

Product: Sikafloor® ${ }^{\circledR}$ NA PurCem ${ }^{\circledR}$

 Application: industrialFunctional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADPfosi,M Abiotic depletion potential for fossil resources used as materials
Note: " $E \pm$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 36

Product: Sikafloor® ${ }^{\circledR}$ NA PurCem ${ }^{\circledR}$

 Application: industrialFunctional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{3 0}$ years

ADP fossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared.
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 37
Product: Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System HDB and trowelled Application: commercial and industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market and technic al service life: $\mathbf{3 0}$ years

ADP fossi,M Abiotic depletion potential for fossil resources used as materials
Note: " $E \pm$ " means " $\times 10 \pm$ "c. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for infomational puposesonly. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 38
Product: Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System HDB and trowelled Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: 60 years

Indicators	Units	Total	A1-3	A4	A5	B1	B2	B3	B4	B5	B6	87	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	$1.42 \mathrm{E}+1$	$1.09 \mathrm{E}+1$	1.84E+0	2.58E-1	0	1.16E+0	0	0	0	0	0	0	6.36E-2	0	3.14E-3
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	$6.84 \mathrm{E}-2$	4.81E-2	$1.23 \mathrm{E}-2$	$1.23 \mathrm{E}-3$	0	$6.40 \mathrm{E}-3$	0	0	0	0	0	0	$3.65 \mathrm{E}-4$	0	$2.51 \mathrm{E}-6$
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	$5.11 \mathrm{E}-2$	3.87E-2	$2.63 \mathrm{E}-3$	8.35E-4	0	8.53E-3	0	0	0	0	0	0	5.22E-5	0	3.39E-4
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	$1.22 \mathrm{E}+0$	6.14E-1	$3.30 \mathrm{E}-1$	$2.07 \mathrm{E}-1$	0	5.84E-2	0	0	0	0	0	0	9.99E-3	0	5.79E-5
ODP	kg CFC-11 eq.	$1.98 \mathrm{E}-6$	1.43E-6	$4.38 \mathrm{E}-7$	3.82E-8	0	$6.14 \mathrm{E}-8$	0	0	0	0	0	0	$1.53 \mathrm{E}-8$	0	$1.08 \mathrm{E}-10$
Resource use																
NRPRE	MJ	1.84E+2	1.33E+2	$2.79 \mathrm{E}+1$	3.29E+0	0	1.83E+1	0	0	0	0	0	0	$9.13 \mathrm{E}-1$	0	$2.38 \mathrm{E}-1$
NRPRM	kg	$2.19 \mathrm{E}+0$	2.14E+0	0	$4.29 \mathrm{E}-2$	0	0	0	0	0	0	0	0	0	0	0
RPRE	MJ	$1.54 \mathrm{E}+1$	8.50E+0	$4.03 \mathrm{E}-1$	$1.84 \mathrm{E}-1$	0	6.26E+0	0	0	0	0	0	0	4.30E-3	0	6.13E-3
RPR ${ }_{\text {M }}$	kg	$3.20 \mathrm{E}-1$	4.37E-2	0	8.74E-4	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDwPs	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {e }}$	MJ	$1.69 \mathrm{E}+2$	1.21E+2	$2.75 \mathrm{E}+1$	3.03E+0	0	$1.65 \mathrm{E}+1$	0	0	0	0	0	0	9.07E-1	0	$2.35 \mathrm{E}-1$
ADP fossil, $^{\text {m }}$	kg	$2.19 \mathrm{E}+0$	$2.14 \mathrm{E}+0$	0	$4.29 \mathrm{E}-2$	0	0	0	0	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$2.98 \mathrm{E}-1$	$1.60 \mathrm{E}-1$	$5.73 \mathrm{E}-3$	$3.36 \mathrm{E}-3$	0	$1.28 \mathrm{E}-1$	0	0	0	0	0	0	1.12E-4	0	2.63E-4
Waste*																
HWD	kg	3.04E-2	$2.98 \mathrm{E}-2$	0	5.95E-4	0	0	0	0	0	0	0	0	0	0	0
NHWD	kg	$1.63 \mathrm{E}+0$	0	0	8.33E-2	0	0	0	0	0	0	0	0	0	0	$1.54 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IWRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP G	Global warming potential (GWP ${ }_{100}$)					SM Se		Secondary materials				B1	Use			
AP Acid						RSF Re		Renewable secondary fuels				B2	Maintenance			
EP Euta	Acidification potentialEutrophication potential					NRSF N		Non-renewable secondary fuels				B3	Repair			
SFP S	Smog formation potential					FW C		Consumption of fresh water				B4	Replacement			
ODP O	Ozone depletion potential					HWD Ha		Hazardous waste disposed				B5	Refurbishment			
NRPRE	Non-renewable primary resourcesused as an energy camer					NHWD N		Non-hazardous waste disposed				B6	Operational energy use			
NRPRM N	Non-renewable primary resources with energy content used as a material					HLRW H		High-level radioactive waste				B7	Operational water use			
$\mathrm{RPR}_{\mathrm{E}} \quad \mathrm{R}$	Renewable primary resourcesused as an energy camer					ILRW In		Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM \quad R	Renewable primary resources with energy content used asa materialRecovered energy from disposal of waste in previous systems					A1-3 Prod		Production stage				C2	Transport			
REDwps						A4 ${ }_{\text {A5 }} \quad$ In		Transport to site				C3	Waste processing			
$\mathrm{ADP}_{\text {fossil, }} \mathrm{E}$	Recovered energy from disposal of waste in previous systemsAbiotic depletion potential for fossil resources used as energy							installation				C4	Disposal			

ADPfosi,M Abiotic depletion potential for fossil resourcesused as materials
Note: "E Y " means " $\times 10 \pm$ "'. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 39
Product: Skafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System HDB and trowelled Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADP fossil, E Abiotic depletion potential for fossil resourcesused as energy
ADPfossil, M Abiotic depletion potential for fossil resources used as materials
Note: "E Y " means " $\times 10 \pm$ "'. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems|Environmental Product Declaration (EPD) \#2068-2738

Table 40
Product: Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System Broadcast Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

Indicators	Units	Total	A1-3	A4	A5	81		82	83	B4	B5	B6	B7	C1	C2	C3	C4
Environmental indicators																	
GWP	kg CO 2 eq .	$1.61 \mathrm{E}+1$	8.83E+0	1.27E+0	$2.05 \mathrm{E}-1$	0		1.16E+0	0	4.44E+0	0	0	0	0	9.90E-2	5.63E-2	$2.45 \mathrm{E}-3$
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	7.47E-2	3.89E-2	8.50E-3	9.66E-4	0		$6.40 \mathrm{E}-3$	0	$1.94 \mathrm{E}-2$	0	0	0	0	5.68E-4	$4.70 \mathrm{E}-6$	$1.96 \mathrm{E}-6$
EP	$\mathrm{kg} \mathrm{Neq}$.	$6.01 \mathrm{E}-2$	3.25E-2	1.81E-3	6.93E-4	0		8.53E-3	0	$1.62 \mathrm{E}-2$	0	0	0	0	8.13E-5	$1.04 \mathrm{E}-5$	$2.64 \mathrm{E}-4$
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	$1.23 \mathrm{E}+0$	4.91E-1	$2.28 \mathrm{E}-1$	7.35E-2	0		$5.84 \mathrm{E}-2$	0	3.66E-1	0	0	0	0	1.56E-2	$1.41 \mathrm{E}-4$	4.51E-5
ODP	kg CFC-11 eq.	2.27E-6	$1.24 \mathrm{E}-6$	3.02E-7	3.15E-8	0		$6.14 \mathrm{E}-8$	0	6.19E-7	0	0	0	0	$2.38 \mathrm{E}-8$	4.94E-11	8.39E-11
Resource use																	
NRPRE	MJ	$2.05 \mathrm{E}+2$	$1.08 \mathrm{E}+2$	1.92E+1	$2.59 \mathrm{E}+0$	0		$1.83 \mathrm{E}+1$	0	5.54E+1	0	0	0	0	$1.42 \mathrm{E}+0$	4.42E-3	$3.65 \mathrm{E}-1$
NRPRM	kg	$2.57 \mathrm{E}+0$	1.68E+0	0	3.37E-2	0		0	0	8.54E-1	0	0	0	0	0	0	0
RPRE	MJ	1.73E+1	7.15E+0	$2.77 \mathrm{E}-1$	$1.54 \mathrm{E}-1$	0		6.26E+0	0	3.50E+0	0	0	0	0	$6.69 \mathrm{E}-3$	$1.37 \mathrm{E}-4$	$9.37 \mathrm{E}-3$
RPRM	kg	$3.05 \mathrm{E}-1$	2.92E-2	0	5.84E-4	0		$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDwPs	MJ	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	1.87E+2	$9.75 \mathrm{E}+1$	$1.89 \mathrm{E}+1$	$2.38 \mathrm{E}+0$	0		$1.65 \mathrm{E}+1$	0	5.04E+1	0	0	0	0	$1.41 \mathrm{E}+0$	4.31E-3	$3.59 \mathrm{E}-1$
ADP ${ }_{\text {fosil, }}$ M	kg	$2.57 \mathrm{E}+0$	$1.68 \mathrm{E}+0$	0	3.37E-2	0		0	0	8.54E-1	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$3.25 \mathrm{E}-1$	$1.30 \mathrm{E}-1$	3.95E-3	$2.70 \mathrm{E}-3$	0		$1.28 \mathrm{E}-1$	0	6.02E-2	0	0	0	0	$1.75 \mathrm{E}-4$	4.24E-6	4.03E-4
Waste*																	
HWD	kg	3.56E-2	2.33E-2	0	4.67E-4	0		0	0	1.18E-2	0	0	0	0	0	0	0
NHWD	kg	2.47E+0	0	0	6.50E-2	0		0	0	$2.39 \mathrm{E}-2$	0	0	0	0	0	0	$2.38 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
IWRW	kg	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
Legend																	
GWP G	Global warming potential (GWP ${ }_{100}$)					SM Se			Secondary materials				B1	Use			
AP A						RSF Re			Renewable secondary fuels				B2	Maintenance			
EP E	Acidification potentialEutrophication potential					NRSF N			Non-renewable secondary fuels				B3	Repair			
SFP S	Smog formation potential					FW Con			Consumption of fresh water				B4	Replacement			
ODP O	Ozone depletion potential					HWD H			Hazardous waste disposed				B5	Refurbishment			
NRPRE \quad N	Non-renewable primary resourcesused as an energy camer					NHWD N			Non-hazardous waste disposed				B6	Operational energy use			
NRPRM	Non-renewable primary resources with energy content used as a material					HLRW His			High-level radioactive waste				B7	Operational water use			
$\mathrm{RPR}_{\mathrm{E}} \quad \mathrm{R}$	Renewable primary resources used as an energy camier					ILRW In			Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM R	Renewable primary resources with energy content used asa materialRecovered energy from disposal of waste in previous systems					A1-3 Prod			Production stage				C2	Transport			
REDwps R						A4 Transport to site							C3	Waste p	essing		
$\mathrm{ADP}_{\text {fossil, }} \mathrm{E} \quad$ A	Abiotic depletion potential for fossil resourcesused asenergy					A5 Installation							C4	Disposal			

ADPfossi,M Abiotic depletion potential for fossil resources used as materials
Note: " $E \pm$ " means " $\times 10^{ \pm}$" $"$ E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared.
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems | Environmental Product Declaration (EPD) \#2068-2738

Table 41

Product: Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System Broadcast Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{3 0}$ years

Sika Canada | Sika Resinous \& Cementitious Flooring Systems | Environmental Product Declaration (EPD) \#2068-2738

Table 42
Product: Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System Broadcast Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADPfossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \mathbf{Y} " means " $\times 10 \pm$ "'. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems | Environmental Product Declaration (EPD) \#2068-2738

Table 43

Product: Sikafloor ${ }^{\circledR}$ Quartzite ${ }^{\circledR}$ System Broadcast
Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{1 5}$ years

ADPfossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsfor life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 44
Product: Skafloor ${ }^{\circledR}$ Resoc lad MRWType II Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADPfossi,M Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsfor life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 45

Product: Sikafloor ${ }^{\circledR}$ Resoc lad MRWType II Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technic al servic e life: $\mathbf{3 0}$ years

Sika Canada | Sika Resinous \& Cementitious Flooring Systems|Environmental Product Declaration (EPD) \#2068-2738

Table 46

Product: Skafloor ${ }^{\otimes}$ Resoc lad MRWType II Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADPfossi,M Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsfor life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 47
Product: Skafloor ${ }^{\otimes}$ Resoc lad MRWType II Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technic al service life: $\mathbf{1 5}$ years

Sika Canada | Sika Resinous \& Cementitious Flooring Systems|Environmental Product Declaration (EPD) \#2068-2738

Table 48

Product: Skafloor ${ }^{\circledR}$ Smooth Epoxy Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADPfosilm Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \pm \mathrm{Y}^{\prime \prime}$ means " $\times 10 \pm$ ". E. E . " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Signific ant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for infomational puposesonly. As such, no decisions regarding actual cradle-to-grave waste performance between products requirements of 150 21930:2017, but these values
should be derived from these reported values.

Table 49

Product: Sikafloor ${ }^{\circledR}$ Smooth Epoxy Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technic al service life: $\mathbf{1 5}$ years

Indicators	Units	Total	A1-3	A4	A5	B1	82	83	B4	85	B6	87	C1.	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	1.13E+1	3.74E+0	1.54E-1	7.92E-2	0	1.16E+0	0	5.97E+0	0	0	0	0	1.28E-1	7.30E-2	3.17E-3
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	$6.03 \mathrm{E}-2$	1.92E-2	$1.04 \mathrm{E}-3$	4.13E-4	0	$6.40 \mathrm{E}-3$	0	3.24E-2	0	0	0	0	7.37E-4	6.10E-6	2.54E-6
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	$4.55 \mathrm{E}-2$	1.41E-2	2.19E-4	2.91E-4	0	8.53E-3	0	2.18E-2	0	0	0	0	1.05E-4	$1.35 \mathrm{E}-5$	3.42E-4
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	$1.02 \mathrm{E}+0$	$2.14 \mathrm{E}-1$	$2.78 \mathrm{E}-2$	$1.35 \mathrm{E}-1$	0	$5.84 \mathrm{E}-2$	0	5.62E-1	0	0	0	0	2.02E-2	$1.83 \mathrm{E}-4$	5.85E-5
ODP	kg CFC-11 eq.	$1.49 \mathrm{E}-6$	5.06E-7	3.67E-8	1.11E-8	0	$6.14 \mathrm{E}-8$	0	8.40E-7	0	0	0	0	3.09E-8	$6.40 \mathrm{E}-11$	$1.09 \mathrm{E}-10$
Resource use																
NRPRE	MJ	$1.40 \mathrm{E}+2$	4.49E+1	2.34E+0	9.66E-1	0	$1.83 \mathrm{E}+1$	0	7.15E+1	0	0	0	0	$1.84 \mathrm{E}+0$	$5.73 \mathrm{E}-3$	4.73E-1
NRPR ${ }_{\text {M }}$	kg	$1.80 \mathrm{E}+0$	$6.95 \mathrm{E}-1$	0	$1.39 \mathrm{E}-2$	0	0	0	1.09E+0	0	0	0	0	0	0	0
RPRE	MJ	$1.61 \mathrm{E}+1$	3.79E+0	3.36E-2	7.89E-2	0	$6.26 \mathrm{E}+0$	0	5.96E+0	0	0	0	0	8.68E-3	$1.77 \mathrm{E}-4$	$1.21 \mathrm{E}-2$
RPRM	kg	$2.75 \mathrm{E}-1$	0	0	0	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDwps	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP ${ }_{\text {fossil, }}$ E	MJ	$1.27 \mathrm{E}+2$	4.06E+1	$2.30 \mathrm{E}+0$	8.76E-1	0	$1.65 \mathrm{E}+1$	0	$6.47 \mathrm{E}+1$	0	0	0	0	1.83E+0	$5.59 \mathrm{E}-3$	$4.66 \mathrm{E}-1$
ADP ${ }_{\text {fossil, }}$ M	kg	$1.80 \mathrm{E}+0$	6.95E-1	0	$1.39 \mathrm{E}-2$	0	0	0	$1.09 \mathrm{E}+0$	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$2.84 \mathrm{E}-1$	5.91E-2	4.79E-4	1.20E-3	0	$1.28 \mathrm{E}-1$	0	$9.44 \mathrm{E}-2$	0	0	0	0	2.27E-4	5.50E-6	5.23E-4
Waste*																
HWD	kg	3.67E-2	1.44E-2	0	2.87E-4	0	0	0	2.21E-2	0	0	0	0	0	0	0
NHWD	kg	3.14E+0	0	0	2.72E-2	0	0	0	3.29E-2	0	0	0	0	0	0	$3.08 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IWRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP G	Global waming potential (GWP $_{100}$)Acidification potential					SM Secon		Secondary materials				B1	Use			
AP A						RSF Re		Renewable secondary fuels				B2	Mainten			
EP Eut						NRSF No		Non-renewable secondary fuels				B3	Repair			
SFP S						FW Con		Consumption of fresh water				B4	Replace			
ODP O	Smog formation potential Ozone depletion potential					HWD Ha		Hazardous waste disposed				B5	Refurbis	ent		
NRPRE	Ozone depletion potential Non-renewable primary resources used as an energy camier							Non-hazardous waste disposed				B6	Operati	a energy use		
NRPRM	Non-renewable primary resources used as an energy camer Non-renewable primary resources with energy content used as a material							High-level radioactive waste				B7	Operati	I water use		
RPR R_{E} R	Renewable primary resourcesused as an energy camier							Intermediate/low-level radioactive waste				C1	De-con	ction/Demo		
RPRM R	Renewable primary resources with energy content used asa material							Production stage				C2	Transpo			
REowps R	Recovered energy from disposal of waste in previous systems							Transport to site				C3	Waste p	essing		
ADP fossil, $^{\text {E }}$ A	Abiotic depletion potential for fossil resources used asenergy						A	Installation				C4	Disposal			
ADPfossi,M A	Abiotic depletion potential for fossil resources used as materials															
*Significant data limitations currently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational purposesonly. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.																

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 50

Product: Skafloor ${ }^{\circledR}$ Smooth Epoxy Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market and technic al service life: $\mathbf{5}$ years

ADPfossil, Abiotic depletion potential for fossil resources used as materials
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 51
Product: Skafloor ${ }^{\circledR}$ Terrazzo Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{3 0}$ years

ADPfossil, Abiotic depletion potential for fossil resources used as materials
*Signific ant data limitationscurrently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 52

Product: Skafloor® ${ }^{\text {® }}$ Tenazzo Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor coating system (cradle-to-grave)
Estimated technic al service life: $\mathbf{6 0}$ years

Indicators	5 Units	Total	A1-3	A4	A5	B1	B2	83	B4	B5	B6	B7	C1	C2	C3	C4
Environmental indicators																
GWP	$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$.	2.85E+1	2.58E+1	9.09E-1	5.49E-1	0	1.16E+0	0	0	0	0	0	0	6.36E-2	3.62E-2	$1.57 \mathrm{E}-3$
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	$1.51 \mathrm{E}-1$	1.35E-1	6.14E-3	2.90E-3	0	$6.40 \mathrm{E}-3$	0	0	0	0	0	0	3.65E-4	3.02E-6	$1.26 \mathrm{E}-6$
EP	$\mathrm{kg} \mathrm{N} \mathrm{eq}$.	$1.17 \mathrm{E}-1$	1.05E-1	$1.29 \mathrm{E}-3$	2.21E-3	0	$8.53 \mathrm{E}-3$	0	0	0	0	0	0	5.22E-5	6.67E-6	$1.70 \mathrm{E}-4$
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	$2.58 \mathrm{E}+0$	$1.48 \mathrm{E}+0$	1.65E-1	8.66E-1	0	5.84E-2	0	0	0	0	0	0	$9.99 \mathrm{E}-3$	9.06E-5	$2.90 \mathrm{E}-5$
ODP	kg CFC-11 eq.	3.63E-6	3.26E-6	$2.17 \mathrm{E}-7$	7.24E-8	0	$6.14 \mathrm{E}-8$	0	0	0	0	0	0	$1.53 \mathrm{E}-8$	3.17E-11	5.39E-11
Resource use																
NRPRE	MJ	3.36E+2	$2.96 \mathrm{E}+2$	$1.38 \mathrm{E}+1$	$6.41 \mathrm{E}+0$	0	$1.83 \mathrm{E}+1$	0	0	0	0	0	0	9.13E-1	$2.84 \mathrm{E}-3$	$2.34 \mathrm{E}-1$
NRPRM	kg	4.37E+0	4.28E+0	0	8.56E-2	0	0	0	0	0	0	0	0	0	0	0
RPRE	MJ	2.98E+1	$2.28 \mathrm{E}+1$	1.98E-1	$4.85 \mathrm{E}-1$	0	$6.26 \mathrm{E}+0$	0	0	0	0	0	0	4.30E-3	8.79E-5	$6.02 \mathrm{E}-3$
RPRM	kg	$2.75 \mathrm{E}-1$	0	0	0	0	$2.75 \mathrm{E}-1$	0	0	0	0	0	0	0	0	0
REDups	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	$3.05 \mathrm{E}+2$	$2.67 \mathrm{E}+2$	$1.36 \mathrm{E}+1$	5.81E+0	0	$1.65 \mathrm{E}+1$	0	0	0	0	0	0	$9.07 \mathrm{E}-1$	$2.77 \mathrm{E}-3$	2.31E-1
ADP ${ }_{\text {fossil, }}$ M	kg	4.37E+0	4.28E+0	0	8.56E-2	0	0	0	0	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$4.88 \mathrm{E}-1$	3.50E-1	$2.83 \mathrm{E}-3$	7.18E-3	0	$1.28 \mathrm{E}-1$	0	0	0	0	0	0	1.12E-4	2.73E-6	$2.59 \mathrm{E}-4$
Waste*																
HWD	kg	8.39E-2	8.23E-2	0	$1.65 \mathrm{E}-3$	0	0	0	0	0	0	0	0	0	0	0
NHWD	kg	1.80E+0	0	0	2.72E-1	0	0	0	0	0	0	0	0	0	0	$1.53 \mathrm{E}+0$
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IШRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP	Global warming potential (GWP $\mathrm{TOO}^{\text {) }}$					SM Se		Secondary materials				B1	Use			
AP	Acidification potential						RSF Re	Renewable secondary fuels				B2	Maintenance			
EP							NRSF No	Non-renewable secondary fuels				B3	Repair			
SFP	Smog formation potential						FW Con	Consumption of fresh water				B4	Replacement			
ODP	Ozone depletion potential						HWD Ha	Hazardous waste disposed				B5	Refurbishment			
NRPRE	Non-renewable primary resources used as an energy camier						NHWD No	Non-hazardous waste disposed				B6	Operational energy use			
NRPRM	Non-renewable primary resources with energy content used as a material						HLRW His	High-level radioactive waste				B7	Operational water use			
RPRE	Renewable primary resources used as an energy camier						ILRW In	Intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM	Renewable primary resources with energy content used as a material						A1-3 Prod	Production stage				C2	Transport			
RE ${ }_{\text {dwps }}$	Recovered energy from disposal of waste in previous systems						A4 $\begin{aligned} & \text { A5 }\end{aligned}$	Transport to site				C3	Waste processing			
ADP fossil, $^{\text {E }}$	Abiotic depletion potential for fossil resourcesused as energy							Installation				C4	Disposal			
Note: " $\mathrm{E} \pm$ " means " $\times 10 \pm \neq$ ". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared. should be derived from these reported values.																

Table 53

Product: Sikafloor®-52 PC Grey Application: commercial and industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market and technic al service life: $\mathbf{3 0}$ years

Table 54
Product: Sikafloor®-52 PC Grey Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: 60 years

ADP fossim Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \pm \mathrm{Y}^{\prime \prime}$ means " $\times 10 \pm$ ". E. E . " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for infomational puposesonly. As such, no decisions regarding actual cradle-to-grave waste performance between products requirements of
should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 55
Product: Sikafloor®-52 PC Grey Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADP ${ }_{\text {fossil,M }}$ Abiotic depletion potential for fossil resources used as materials
Note: " $\mathrm{E} \Psi$ " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurently exist within the LCI data used to generate waste metricsforlife cycle assessmentsand environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Table 56

Product: Skafloore-53 PC White Application: commercial and industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market and technic al service life: $\mathbf{3 0}$ years

Table 57

Product: Sikafloor®-53 PC White

 Application: commercialFunctional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: 60 years

ADPfossil, M Abiotic depletion potential for fossil resources used as materials
Note: "E E Y" means " $\times 10 \pm$ "‘. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems| Environmental Product Declaration (EPD) \#2068-2738

Table 58
Product: Skafloor®-53 PC White Application: industrial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{2 0}$ years

ADP fossi,M Abiotic depletion potential for fossil resources used as materials
Note: "E \pm " means " $\times 10 \pm$ "". E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems | Environmental Product Declaration (EPD) \#2068-2738

Table 59
Product: Sikalastic ${ }^{\text {®-3 }} \mathbf{3 9 0 0}$ Traffic Coating System Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated market service life: $\mathbf{1 0}$ years

ADP fossi,E Abiotic depletion potential for fossil resourcesused as energy
ADPfossilm Abiotic depletion potential for fossil resources used as materials
Note: "E Y " means " $\times 10 \pm$ "'. E.g. " $2.8 \mathrm{E}-1$ " means 0.28 . Module D is not declared
*Significant data limitationscurrently exist within the LCI data used to generate waste metricsforlife cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are forinformational purposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

Sika Canada | Sika Resinous \& Cementitious Flooring Systems | Environmental Product Declaration (EPD) \#2068-2738

Table 60

Product: Sikalastic ${ }^{\circledR}$ - 3900 Traffic Coating System Application: commercial

Functional unit: $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of floor c oating system (cradle-to-grave)
Estimated technical service life: $\mathbf{1 5}$ years

Indicators	Units	Total	A1-3	A4	A5	$B 1$	82	83	B4	B5	B6	B7	C1	C2	C3	C4
Environmental indicators																
GWP	kg CO 2 eq .	$2.31 \mathrm{E}+1$	7.75E+0	3.19E-1	1.98E-1	0	$1.16 \mathrm{E}+0$	0	1.33E+1	0	0	0	0	1.87E-1	$1.06 \mathrm{E}-1$	4.61E-3
AP	$\mathrm{kg} \mathrm{SO}_{2} \mathrm{eq}$.	$1.12 \mathrm{E}-1$	3.59E-2	$2.16 \mathrm{E}-3$	7.96E-4	0	$6.40 \mathrm{E}-3$	0	$6.57 \mathrm{E}-2$	0	0	0	0	$1.07 \mathrm{E}-3$	8.87E-6	$3.68 \mathrm{E}-6$
EP	$\mathrm{kg} \mathrm{Neq}$.	6.75E-2	1.91E-2	4.54E-4	$1.48 \mathrm{E}-3$	0	8.53E-3	0	3.73E-2	0	0	0	0	$1.53 \mathrm{E}-4$	$1.96 \mathrm{E}-5$	4.98E-4
SPP	$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	$1.68 \mathrm{E}+0$	$4.39 \mathrm{E}-1$	5.82E-2	$1.09 \mathrm{E}-1$	0	5.84E-2	0	$9.90 \mathrm{E}-1$	0	0	0	0	2.93E-2	$2.66 \mathrm{E}-4$	8.50E-5
ODP	kg CFC-11 eq.	$2.01 \mathrm{E}-6$	6.10E-7	$7.64 \mathrm{E}-8$	$1.50 \mathrm{E}-8$	0	$6.14 \mathrm{E}-8$	0	1.20E-6	0	0	0	0	$4.49 \mathrm{E}-8$	9.31E-11	$1.58 \mathrm{E}-10$
Resource use																
NRPRE	MJ	$3.00 \mathrm{E}+2$	9.79E+1	4.86E+0	$2.16 \mathrm{E}+0$	0	$1.83 \mathrm{E}+1$	0	$1.74 \mathrm{E}+2$	0	0	0	0	$2.68 \mathrm{E}+0$	8.33E-3	6.87E-1
NRPRM	kg	4.21E+0	$1.55 \mathrm{E}+0$	0	$3.10 \mathrm{E}-2$	0	0	0	$2.63 \mathrm{E}+0$	0	0	0	0	0	0	0
RPRE	MJ	$2.54 \mathrm{E}+1$	6.58E+0	$6.95 \mathrm{E}-2$	$1.46 \mathrm{E}-1$	0	6.26E+0	0	$1.23 \mathrm{E}+1$	0	0	0	0	1.26E-2	$2.58 \mathrm{E}-4$	$1.77 \mathrm{E}-2$
RPRM	kg	$1.33 \mathrm{E}+0$	5.57E-1	0	1.11E-2	0	$2.75 \mathrm{E}-1$	0	$4.84 \mathrm{E}-1$	0	0	0	0	0	0	0
REDwPs	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADP frosil, $^{\text {E }}$	MJ	$2.68 \mathrm{E}+2$	8.65E+1	4.78E+0	1.91E+0	0	$1.65 \mathrm{E}+1$	0	$1.54 \mathrm{E}+2$	0	0	0	0	$2.66 \mathrm{E}+0$	$8.12 \mathrm{E}-3$	$6.77 \mathrm{E}-1$
ADP ${ }_{\text {fosil, }}$ M	kg	4.21E+0	$1.55 \mathrm{E}+0$	0	3.10E-2	0	0	0	$2.63 \mathrm{E}+0$	0	0	0	0	0	0	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m^{3}	$5.07 \mathrm{E}-1$	1.41E-1	$9.94 \mathrm{E}-4$	2.96E-3	0	$1.28 \mathrm{E}-1$	0	$2.32 \mathrm{E}-1$	0	0	0	0	3.30E-4	7.99E-6	7.60E-4
Waste*																
HWD	kg	7.09E-2	$2.84 \mathrm{E}-2$	0	5.68E-4	0	0	0	4.19E-2	0	0	0	0	0	0	0
NHWD	kg	4.76E+0	0	0	$1.18 \mathrm{E}-1$	0	0	0	$1.67 \mathrm{E}-1$	0	0	0	0	0	0	4.48E+0
HLRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IWRW	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Legend																
GWP G	Global warming potential (GWP ${ }_{100}$)					SM Se		Secondary materials				B1	Use			
AP A						RSF Re		Renewable secondary fuels				B2	Maintenance			
EP E	Acidific ation potentialEutrophic ation potential					NRSF No		Non-renewable secondary fuels				B3	Repair			
SFP S	Smog formation potential					FW C		Consumption of fresh water				B4	Replacement			
ODP O	Ozone depletion potential					HWD Ha		Hazardous waste disposed				B5	Refurbishment			
NRPRE	Non-renewable primary resources used as an energy camier					NHWD No		Non-hazardous waste disposed				B6	Operational energy use			
NRPRM	Non-renewable primary resources with energy content used as a material					HLRW Hi		High-level radioactive waste				B7	Operational water use			
RPRE ${ }_{\text {E }}$	Renewable primary resourcesused as an energy camier					IURW In		intermediate/low-level radioactive waste				C1	De-construction/Demolition			
RPRM R	Renewable primary resources with energy content used asa materialRecovered energy from disposal of waste in previous systems					A1-3 Prod		Production stage				C2	Transport			
REDwps R						A4 Tra		Transport to site				C3	Waste processing			
ADP fossil, $^{\text {E }}$ A	Abiotic depletion potential for fossil resources used as energy					A5 In		nstallation				C4				

ADPfossil, Abiotic depletion potential for fossil resources used as materials
*Significant data limitationscurrently exist within the LCI data used to generate waste metrics for life cycle assessments and environmental product declarations. The waste metrics were calculated in a way conformant with the requirements of ISO 21930:2017, but these values represent rough estimates (foreground only) and are for informational puposes only. As such, no decisions regarding actual cradle-to-grave waste performance between products should be derived from these reported values.

4.6. Life cycle impact assessment - intepretation

Sikafloor ${ }^{\circledR}$ Smooth Epoxy (10-yr commercial market service life)

The interpretation of the Sika floor® Smooth Epoxy system results (Table 48) is presented in this section. Due to the high number of studied products, this system was selected as a typic al resinous floorcoating system for the interpretation.

Potential environmental impact indic ators

As observed in Figure 3 for the resinous floor system, the replacement module (B4) is the ma in contributors to most indicators (60% to 68% of all impact indic ators). This is due mainly to the raw materials needed to manufacture the five recoats over 60 years, especially the epoxy resin. After the recoats, raw material supply of the first system (A1), ma inly epoxy resin, and maintenance ${ }^{2}$ (B2) contribute between 10% and 20% and between 3% and 14% of impact indicators, respectively. The production of cleaning agent (non-ionic surfactant) is the source of impacts during maintenance. All other modules are less significant, including Sika's operations. An exception is the smog formation indicator, which is related to VOC emissions. For this indic ator, the installation (A5) is similar in contribution to A1 and B2 due to the VOC content emission related to the first floor coating system, asit is taken into account during recoating (B4).

Figure 3: Relative contribution of life cycle modules to potential environmental impacts for $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of Sikafloor® Smooth Epoxy (average coverage, 10-yr commercial market senvice life) ${ }^{3}$

Use of resources indicators (total primary energy consumption and material resources consumption) For these indic a tors exc ept renewable primary energy as material, recoats (B4) and raw material supply (A1) forthe insta llation of the initial system account togetherfor between 61% and 99% for the indic ators. For the fresh water and the renewable primary energy indicators, the second most important module after recoating is maintenance (B2) for cleaning. Renewable primary energy as material is used exclusively during maintenance because of the surfactant partly produced from plants.

Waste generation indicators

Most of disposed waste is attributed to the C4 module, the end of life, and is classified as non-hazardous. It includes the initial applied system, all applied recoats and all unused coating over the 60 -year period. A small a mount of hazardous waste is generated by the manufacturing (A3).

[^3]Sikafloor ${ }^{\circledR}$ NA PurCem ${ }^{\circledR}$ (20-yr industrial market senvice life)
The interpretation of the Sikafloor® NA PurCem ${ }^{\circledR}$ results (Table 35) is presented in this section. Due to the high number of studied products, this system was selected as a typical cementitious floor system for the interpretation.

Potential environmental impact indic ators

The PurCem floor system is a thick cementitious system containing mostly cement and sand. Therefore, as observed in Figure 4, the life cycle impacts of the raw material supply (A1) for the initial system are significant, accounting for between 22 \% and 59% of the life cycle, compared to the recoats (B4). The raw material contributing the most to Al for the global warming indicator is the methylene diphenyl diisocyanate (MDI), a precursor of polyurethane. After the A1 module, the remaining modules of the production stage, that is to say transport of raw materials (A2), manufacturing (A3), a nd transport to the project site (A4), contribute together to between 18% and 59% of the total over the life cycle. This important contribution is due to the material intensity per square meter of the system due to its thickness. The production of cleaning agent ${ }^{4}$ (non-ionic surfactant) is the source of impacts during maintenance, which is signific ant for one indic ator.
The PurCem system uses mainly low-VOC components. Therefore, the installation (A5) and the recoats (B4) a c count for only 17 \% of the Smog formation indicator.

Figure 4: Relative contribution of life cycle modules to potential environmental impacts for $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of Sikafloor ${ }^{\circledR}$ NA PurCem ${ }^{\circledR}$ (average coverage, $20-y r$ industrial market senvice life) ${ }^{5}$

Use of resources indicators (total primary energy consumption and material resources consumption) The material use indic ators are dominated by the A1 module ($57 \%-77 \%$). For energy use indic ators, the contribution of A1 goes down between 34% and 53% since energy isconsumed in many other modules. Manufacturing (A3) consumes significant renewable primary energy because of the hydroelectricity consumed at the Quebec and the B.C. plants. Fresh water is mostly consumed during raw material supply (A1) a nd maintenance (B2).
Waste generation indicators
Most waste disposed is a ttributed to the C4 module, the end of life, and is classified as non-haza rdous. It includes the initial applied system, all applied recoats and all unused coating over the $60-\mathrm{yr}$ period. A small a mount of hazard ous waste is generated by the manufacturing (A3).

[^4]
5. Additional environmental information

This section provides additional relevant environmental information about the manufacturer and the floor systems that was not derived from the LCA.

Sika's Commitment to sustainability

Providing long lasting and high-performance solutions to the benefit of our customers, Sika is committed to pioneering susta inable solutionsthat a re safer, have the lowest impact on resourc esand addressglobal environmental challenges. Therefore, Sika assumes the responsibility to provide sustainable solutions in order to improve material, water and energy effic iency in construction and transportation. Sika strives to create more value for all its stakeholders with its products, systems a nd solutions along the whole value chain and throughout the entire life span of its products. Sika is committed to measure, improve and communicate sustainable value creation: "More value, less impact" refers to the company's commitment to maximize the value of its solutions to all stakeholders while reducing resource consumption and impact on the environment.

With the aim of enhancing utility and reducing impacts, the compa ny continues to work on its six strategic target areas, namely economic performance, sustainable solutions, local communities/society, energy, waste/water, and occupational safety. Year after year, Sika honors its responsibility through reporting its performance in a sustainability report in line with the highest standards, the Global Reporting Initiative (GRI). More particularly, the implementation of life-cycle thinking throughout all phases from product development to the use of the productsby customers marks Sika 'sgoal to move away from being a mere product supplier to a provider of innovative solutions which enhances the efficiency, durability, and aesthetic appeal of buildings, infrastructure, and installations.

VOC content

System components covered by this EPD conta in between 0 and 200 grams of VOC per litre, which is in conformity with national standards and LEED requirements (see Table 61 for detailed VOC content per component). The VOC content wasmeasured according to EPA 24 or ASTM D2369 standard methods.

Table 61: VOC content of components

Components	VOC content (g/L)
Quartz aggregate (generic)	Not available. Not expected to contain VOCs.
Scofield ${ }^{\text {® }}$ Formula One ${ }^{\text {TM }}$ Guard-W	<100
Scofield ${ }^{\text {® }}$ Formula One ${ }^{\text {™ }}$ Liquid Dye Concentrate	<11
Scofield ${ }^{\text {® }}$ Formula One $^{\text {™ }}$ Lithium Densifier MP	0
Sika ${ }^{\oplus}$ MTPrimer	≤ 50
Sikafloor ${ }^{\text {® }}$ Aggregate PT	Not available. Not expected to contain VOCs.
Sikafloor ${ }^{\text {® }}$ Comfort Adhesive	0
Sikafloor ${ }^{\text {® }}$ C omfort Porefiller	0
Sikafloor ${ }^{\text {® }}$ C omfort Regupol-6015	0
Sikafloor® ${ }^{\text {® }}$ Dec oFlake ${ }^{\text {® }}$	0
Sikafloor ${ }^{\otimes}$ Duochem-305	195-200
Sikafloor® Duochem-6001	99
Sikafloor® Duochem-9200	1
Sikafloor® Duochem-9205	1
Sikafloor ${ }^{\text {® }}$ Fastflor ${ }^{\text {® }}$ CR	≤ 5

Components	VOC content (g/ L)
Sika floor ${ }^{\text {® }}$ Terrazzo	≤ 50
Sika floor® ${ }^{\circledR}$ Trowel Quartz Aggregate	Not available. Not expected to contain VOCs.
Sika floor ${ }^{\text {® }}$ 156CA	≤ 25
Sika floor®-1610	≤ 50
Sikafloor®-2002	≤ 25
Sika floor®-217	~56
Sikafloor®-22 NA PurCem ${ }^{\circledR}$	≤ 5
Sikafloor®-222 W ESD	~ 1
Sika floor®-260 ESD	≤ 15
Sika floor ${ }^{\text {® }}$ 261 ${ }^{\text {CA }}$	<50
Sika floor ${ }^{\text {®-2 }} 270$ ESD	≤ 25
Sikafloor ${ }^{\text {®-304 W NA }}$	69
Sikafloor®-305 W NA	30
Sikafloor®-31 NA PurCem ${ }^{\circledR}$	≤ 10
Sikafloor®-33 NA PurCem ${ }^{\circledR}$	≤ 10
Sika floor®-330	10
Sikafloor®-52 PC Grey	0
Sikafloor ${ }^{\text {®-5 }}$ P PC White	0
Sikalastic ${ }^{\text {®-1 }} 120$ FS Primer	45
Sikalastic ${ }^{\circledR}-220$ FS	<20
Sikalastic ${ }^{\circledR}$-390 Membrane	3
Sikalastic ${ }^{\text {®-391 }}$ N	14

Waste packaging management

Sika Canada encourages its customers to responsibly dispose of used packaging. Most of them are recyclable. To make recycling easier, it is recommended to separate used packaging according to their material (paper, plastic and metal). Ask information to local municipalities about recycling programs for industrial coating packaging.

6. GLOSSARY

6.1. Acronyms

ADP ${ }_{\text {fossil, }}$	Abiotic depletion potential for fossil resources used as energy
ADP frossi, $^{\text {M }}$	Abiotic depletion potential for fossil resources used as materials
AP	Acidific ation potential
CSA	Canadian Standards Association
EP	Eutrophication potential
FW	Consumption of fresh water
GHG	Greenhouse gas
GWP	Global warming potential
HLRW	High-level radioactive waste
HWD	Haza rdous waste disposed
IWRW	Intemediate/low-level radioa ctive waste
ISO	Intemational Organization for Sta nda rdization
kg CFC-11 eq.	Kilogram of tric hlorofluoromethane equiva lent
kg CO2 eq.	Kilogram of carbon dioxide equivalent
kg Neq .	Kilogram of nitrogen equivalent
$\mathrm{kg} \mathrm{O}_{3} \mathrm{eq}$.	Kilogram of ozone equivalent
kg SO2 eq.	Kilogram of sulphur dioxide equivalent
L	litre
LCA	Life c ycle assessment
LFED	Leadership in Energy and Environmental Design
UHV	Lowerheating value
MJ	Megajoule
m^{2}	Square meter
m^{3}	Cubic meter
NHMD	Non-haza rdous waste disposed
NRPRE	Non-renewable primary resourcesused as an energy camier
NRPRM	Non-renewable primary resources with energy content used as a material
NRSF	Non-renewable secondary fuels
ODP	Ozone depletion potential
PCR	Product category rules
REDWPS	Rec overed energy from disposal of waste in previous systems
RPRE	Renewable primary resources used a san energy camier
RPRM	Renewable primary resources with energy content used as a material
RSF	Renewable secondary fuels
SFP	Smog formation potential
SM	Secondary materials
VOC	Volatile organic compound

6.2. Environmental impact c ategories and parameters assessed

The acidification potential refersto the change in acidity (i.e. reduction in pH) in soil and waterdue to human activity. The increase in NO_{x} and SO_{2} emissions generated by the transportation, manufacturing and energy sectors are the main causes of this impact category. The acidification of land and water has multiple consequences: degradation of aquatic and terrestrial ecosystems, endangering numerous species and food security. The concentration of the gases responsible for the a cidific ation is expressed in sulphur dioxide equivalents ($\mathbf{k g} \mathbf{S O}_{2}$ equivalent).

The eutrophication potential measures the enric hment of an aquatic or terrestrial ecosystem due to the release of nutrients (e.g. nitrates, phosphates) resulting from natural or human activity (e.g. the discharge of wastewater into waterc ourses). In an aquatic environment, this activity results in the growth of algae which consume dissolved oxygen present in water when they degrade a nd thus affect spec iessensitive to the concentration of dissolved oxygen. Also, the increase in nutrients in soils makes it diffic ult for the terrestrial environment to manage the excess of biomass produced. The concentration of nutrients causing this impact is expressed in nitrogen equivalents (kg \mathbf{N} equivalent).

Net fresh water consumption accounts for the imbalance in the natural water cycle created by the water eva porated, consumed by a system or released to a different watershed (i.e. not its original source). This imbalance can cause water scarcity and affect biodiversity. This indicator refers to the waste of the resource rather than its pollution. Also, it does not refer to water that is used but retumed to the original source (e.g. water for hydroelectric turbines, cooling or river transportation) or lost from a natural system (e.g. due to evaporation of rainwater). The quantity of freshwaterconsumed is expressed as a volume of water in meter cube (m^{3} of waterconsumed).

The global warming potential refers to the impact of a temperature increase on the global climate pattems (e.g. severe flooding and drought events, accelerated melting of glaciers) due to the release of greenhouse gases (G HG) (e.g. carbon dioxide and methane from fossil fuel combustion). GHG emissions contribute to the increase in the absorption of radiation from the sun at the earth's surface. These emissions are expressed in units of kg of carbon dioxide equivalents ($\mathrm{kg} \mathrm{CO}_{2}$ equivalent).

The ozone depletion potential indic ator measures the potential of stratospheric ozone level reduction due to the release of some molec ules such as refrigerants used in cooling systems (e.g. chlorofluorocarbons). When they react with ozone $\left(\mathrm{O}_{3}\right)$, the ozone concentration in the stratosphere diminishes and isno longer suffic ient to absorb ultra violet (UV) radiation which can cause high risks to human health (e.g. skin cancers and cataracts) and the terrestrial environment. The concentration of molecules that are responsible of ozone depletion is expressed in kilograms of trichlorofluoromethane equivalents (kg CFC-11 equivalent).

The smog formation potential indic ator covers the emissions of pollutants such as nitrogen oxidesa nd volatile organic compounds (VOCs) into the atmosphere. They are mainly generated by motor vehicles, power plants and industrial facilities. When reacting with the sunlight, these pollutants create smog which can affect human health and cause various respiratory problems. The concentration of pollutants causing smog are expressed in kg of ozone equivalents ($\mathrm{kg} \mathrm{O}_{3}$ equivalent).

The renewable/non-renewable primary energy consumption parameters refer to the use of energy from renewable resources(e.g., wind, solar, hydro) a nd non-renewable resources (e.g., natural gas, coal, petroleum). The quantity of primary energy used is expressed in megajoules, on the basis of the lower heating value of the resources (MJ, LHV).

The renewable/ non-renewable material resources consumption parameters represent the quantity of material made from renewable resources or non-renewable resources used to manufacture a product, excluding recovered or recycled materials. The quantity of these resources is reported in kilograms (kg).

7. REFERENCES

CSA Group (2013). CSA Group Environmental Product Declaration (EPD) Program. Program Requirements. Retrieved from http://www.csaregistries.ca/assets/pdf/EPD_Registry_Program_Requirements.pdf

CSA (2007). CAN/CSA-ISO 14025:07 Environmental labels and declarations- Type III environmental declarations- Principles and procedures.

CSA (2009). CAN/CSA-ISO 14020:99 Environmental labels and declarations - General principles.
ecoinvent (2017). ecoinvent 3.4. https://www.ec oinvent.org/database/older-versions/ecoinvent34/ec oinvent-34.html

Groupe AGÉCO (2019). Life cycle assessment of Sika floor and wall coating systems and components for environmental product declarations.

ISO (2006a). ISO 14040. Environmental management - life cycle assessment - principles and framework. Intemational Standard Organization, Geneva, Switzerland.

ISO (2006b). ISO 14044. Environmental management - life cycle assessment - requirements and guidelines. Intemational Sta ndard Orga nization, Geneva, Switzerla nd.

ISO (2017). ISO 21930. Susta ina bility in build ing construction -- Environmental declaration of building products. Intemational Sta ndard Organization, Geneva, Switzerland.

NSF Intemational (2018). Product Category Rule for Environmental Product Declarations. ACA PCR for Resinous Floor Coatings.
[US EPA] United States Environmental Protection Agency (2012). Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) User's Manual. Retrieved from http://nepis.epa.gov/Adobe/PDF/P100HN53.pdf

[^0]: Notes:
 "2.8E-1" means 0.28.
 GWP = Global warming potential (GWP100); AP = Acidification potential; EP = Eutrophication potential; SFP = Smog formation potential; ODP = Ozone depletion potential.

[^1]: Notes:
 "2.8E-1" means 0.28.
 $G W P=$ Global warming potential (GWP100); AP = Acidification potential; EP = Eutrophication potential; SFP = Smog formation potential; ODP = Ozone depletion potential.

[^2]: ${ }^{1}$ Components are usually sold in two or three separate parts that are mixed on site prior to application. When this is the case, the part in which the ingredient is contained is indicated with a letter.

[^3]: ${ }^{2}$ Cleaning was modelled according to the PCR for resinous floor coatings and is the same for all systems, although floor coating systems have different cleaning needs.
 ${ }^{3}$ Modules $\mathrm{B} 1, \mathrm{~B} 3, \mathrm{~B} 5, \mathrm{~B} 6, \mathrm{~B} 7$ and C 1 are null.

[^4]: ${ }^{4}$ Cleaning was modelled according to the PCR for resinous floor coatings and is the same for all systems, although floor coating systems have different cleaning needs.
 ${ }^{5}$ Modules $\mathrm{B} 1, \mathrm{~B} 3, \mathrm{~B} 5, \mathrm{~B} 6, \mathrm{~B} 7$ and C 1 are null.

