

STRUCTURAL GLAZING – DESIGN CONSIDERATIONS

PAUL CHACKERY – MARKET FIELD ENGINEER, INDUSTRY SIKA CANADA

COURSE DESCRIPTION

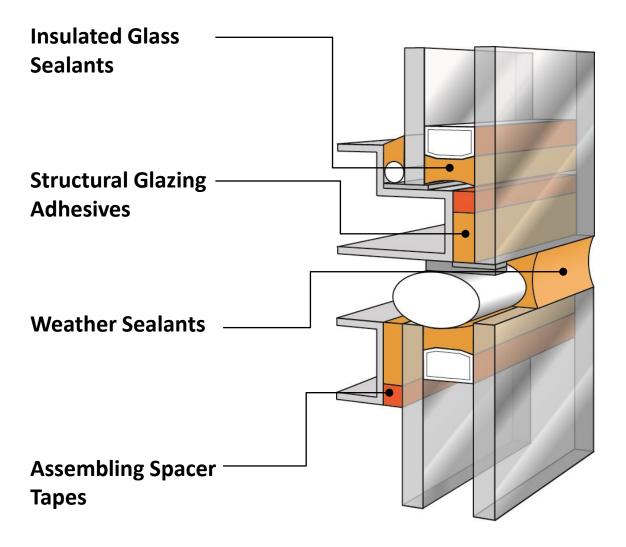

 Description: Structural Design Considerations: Structural Design within a curtain wall focuses on innovative design requirements with a foundation starting from basic construction. Design, validation, and material selection are introduced giving Architects more options in the future.

LEARNING OBJECTIVES

- A basic review of industry definitions and facade, Insulated Glass and Weatherseal components.
- Present several examples of the application of innovative materials to meet the design and efficiency requirements specified within the Architectural community.
- Learn about typical project processes in the design, testing, validation and production of a curtain wall.

STRUCTURAL SEALANT GLAZING

STRUCTURAL SEALANT GLAZING LEADING FACADE TECHNOLOGY



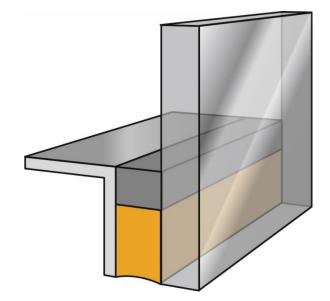
- Visible in all metropolitan cities
- Suitable to all architectural trends
- Elastic Glass Bonding in Facades
- Simple and economical systems
- Energy efficient facade technology
- Factory preassembled units
- Fast on-site installation

STRUCTURAL SEALANT GLAZING STATE OF THE ART

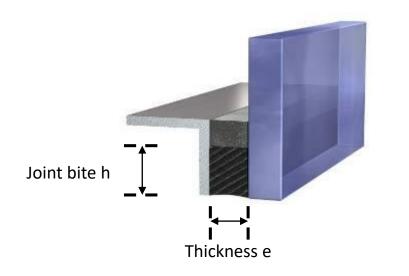
STRUCTURAL SEALANT GLAZING COMPATIBLE SYSTEM APPROACH

System approach

- Approved systems
- Compatible products
- Worldwide available

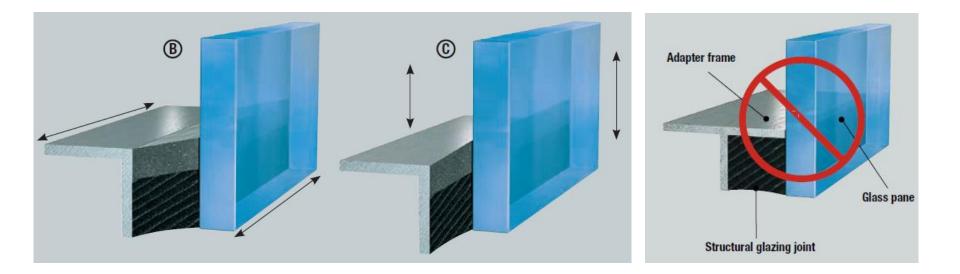

STRUCTURAL SEALANT GLAZING SILICONES FOR STRUCTURAL BONDING

Structural Glazing with 1-component Silicones


- Start of Structural Sealant Glazing
- On-site / repair applications
- ASTM / ETAG approval

Structural Glazing with 2-component Silicones

- Machine applied
- Factory Glass Bonding
- On-site solution with 2-part cartridges
- ASTM / ETAG approval



STRUCTURAL SEALANT GLAZING DESIGN RULES

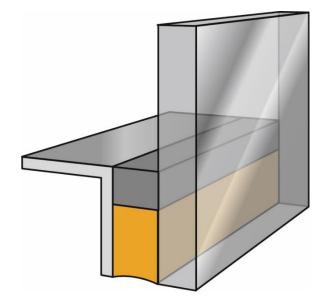
- Minimum joint dimension 6 x 6 mm
- Optimum ratio of joint bite to thickness: 1:1 to 3:1 (4:1)

STRUCTURAL SEALANT GLAZING DESIGN RULES

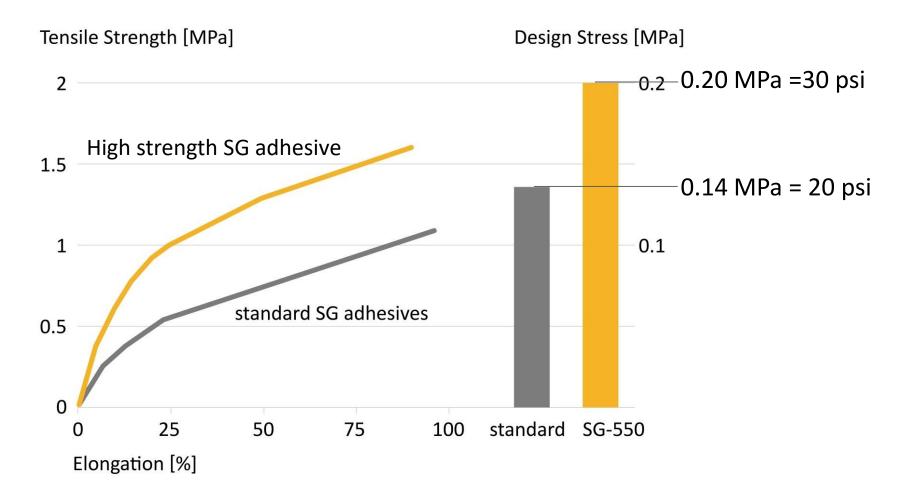
- Minimum joint dimension 6mm x 6mm
- Optimum ratio of joint bite to thickness: 1:1 to 3:1 (4:1)
- Joint to be designed according to expected loads and movements
- Prevent adhesion on three surfaces

STRUCTURAL SEALANT GLAZING SILICONES FOR STRUCTURAL BONDING

Structural Glazing with 1-component Silicones


- Start of Structural Sealant Glazing
- On-site / repair applications
- ASTM / ETAG approval

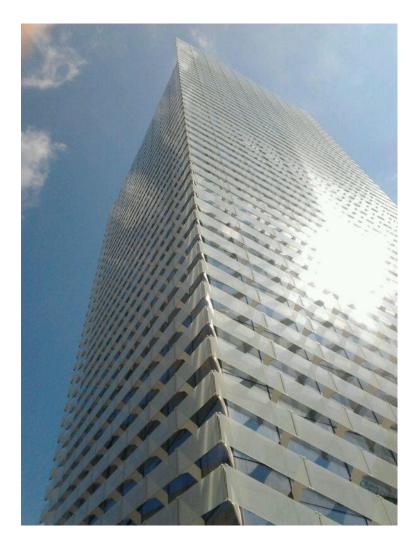
Structural Glazing with 2-component Silicones


- 2-part system, machine applied
- Factory Glass Bonding
- On-site solution with 2-part cartridges
- ASTM / ETAG approval

High Strength Structural Glazing Silicones

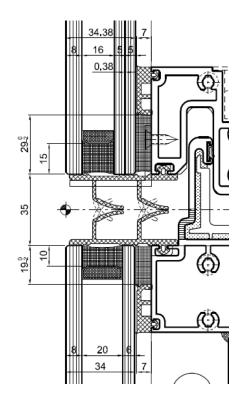
- 2-part system, Factory glass bonding
- 30% higher design strength
- ASTM / ETAG approval

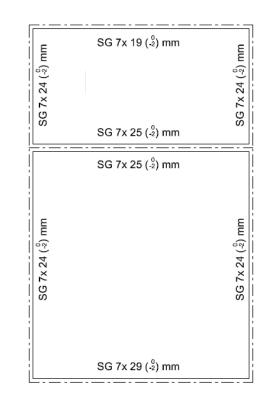
STRUCTURAL SEALANT GLAZING HIGH-STRENGTH SG-ADHESIVE



STRUCTURAL SEALANT GLAZING HIGH STRENGTH- BENEFITS

Please fill in the parameters						Comments or remark	S		
Maximum expected wind load	[kN/m ²]			3.25					
Glass width	[mm]			2200					
Glass height	[mm]			2500					
Total thickness of outer pane	[mm]			14					Comments or remarks
Total thickness of inner pane	[mm]			0				3.25	
Which sealant is used?		(High S [.]	trength SG	-			2200	
Temperature during production	[deg C]			20				2500	
Maximum temperature of the glass	[deg C]			80				14	
Maximum temperature of the profile	[deg C]			55		Aluminum		0	
Glass is deadload supported?			🔘 Tru	ie 🔿 F	alse			Standard SG 🛛 💌	
System is 4 sided Structural Glazing?				True				20	
Glass panes are vertical?				True				80	
								55	Aluminum
Results of the Calculation								True OFalse	
Bite of the SG joint	[]			17.88				True	
in case of windloads	[mm]			17.00				True	
Bite of the SG joint	[mm]			0.00					
in case of unsupported panes	[mm]			0.00					
Bite of the silicone	[mm]	Σ		17.90				25.54	
Thickness of the silicone	[mm]			6.00		Calculated value 3.90 mm		0.00	
		Bite of t	he silic	cone		[mm]	Σ	25.60	
	Thickness of the silicone			[mm]		8.60	Calculated value 3.90 mm		


STRUCTURAL SEALANT GLAZING TORRE PUIG, BARCELONA


- Architect: Rafael Moneo
- Facade: Permasteelisa Spain
- Height: 109 m, 22 floors
 20.000 m² of double skin facade
- Construction Phase: July 2012 – August 2013
- High Strength SG Silicone: glass-metal bonding
- High Strength IG Sealant: insulating glass

STRUCTURAL SEALANT GLAZING TORRE PUIG, BARCELONA

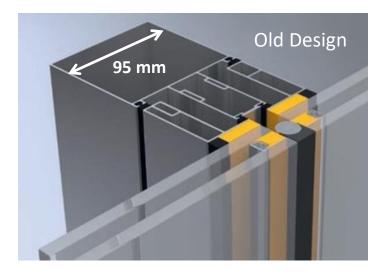
- High wind loads (2.0 => 3.1 kPa)
- Big elements (2.7m x 2.7m)
- Joint shape limited by the aluminum system (predefined by architect)

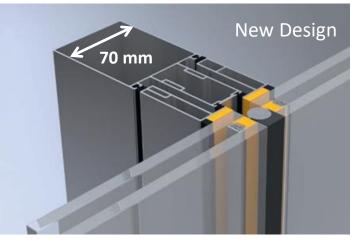
STRUCTURAL SEALANT GLAZING ADVANTAGES OF A HIGH STRENGTH SILICONE

Increasing the capacity

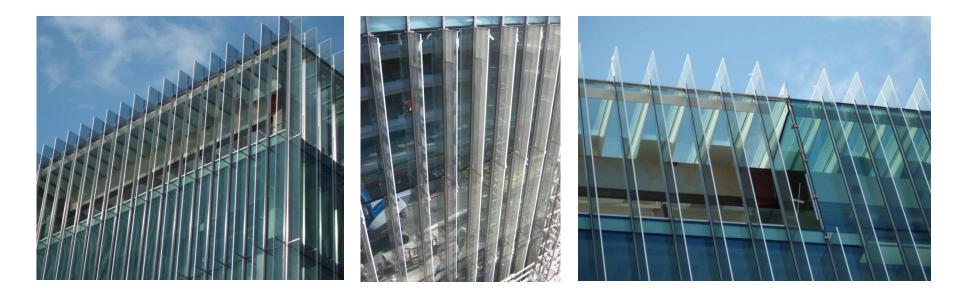
 Carrying higher loads and bigger glass units while using standard joint shapes and curtain walling systems

Saving material and increase transparency


- Reduction of joint dimensions and supporting structure,
- 30% reduction in frame width
 > 10% aluminum mass


High safety level

No compromise on safety


Replacing / Reducing mechanical devices

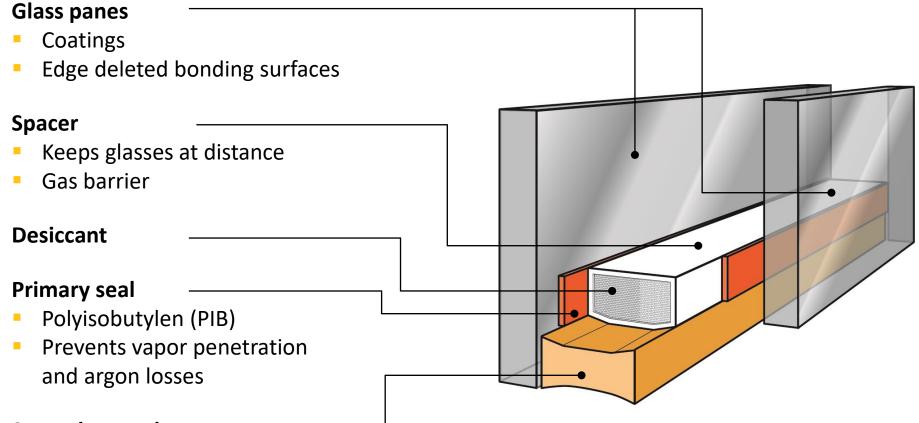
- Expanding feasibility and acceptance of
- ¹⁶ bonded structures

STRUCTURAL SEALANT GLAZING NOVARTIS, NJ USA

- Facade area: app. 7.000 m²
- Fin spacing: app. 0.93m
- Glass fin for stiffening the mullions
- Longest Glass Fin = 9m

STRUCTURAL SEALANT GLAZING NOVARTIS, NJ USA

STRUCTURAL SEALANT GLAZING NOVARTIS, NJ USA

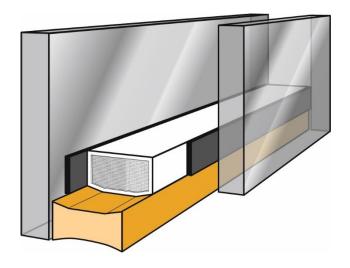

- Switzerland: Corporate Technical Service & Global Key Account Management
- Germany: Engineering and Mock-up
- China: Application of adhesive joints
- USA: Installation

INSULATING GLAZING

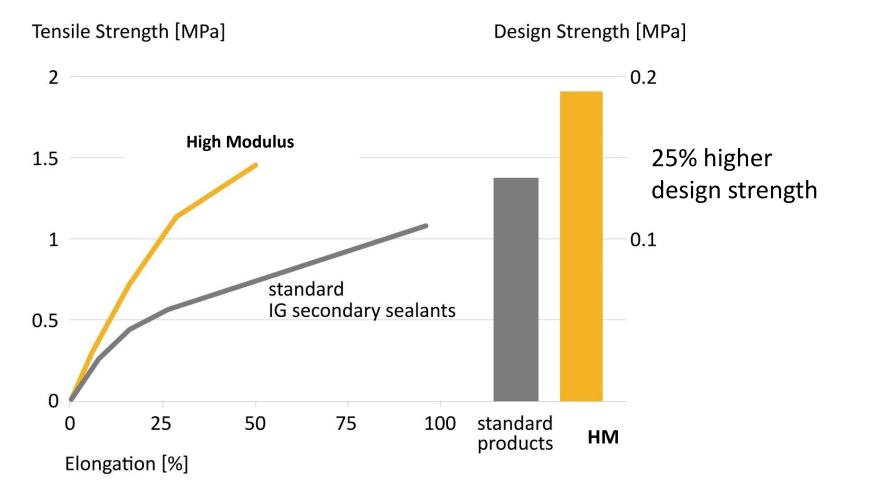
INSULATING GLAZING COMPONENTS IN IG DUAL SEAL SYSTEM

Secondary seal

- Keeps glasses together
- Protects primary seal
- Prevents vapor penetration


INSULATING GLAZING IG UV RESISTANT SECONDARY SEAL

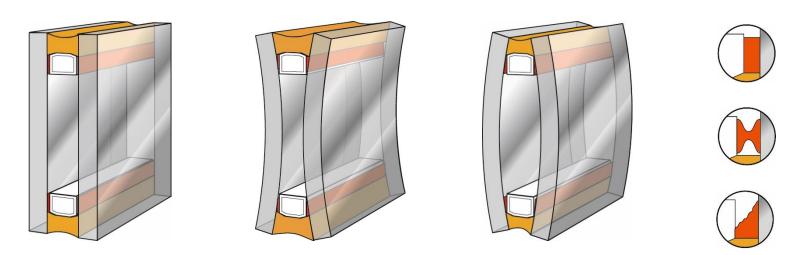
Standard Silicone


- 1-part silicone
- Manual or machine application
- 2-part silicone
- Machine application, automatic IG-Lines

High-modulus Silicone

- 2-part silicone
- Machine application/automatic IG-Lines
- 25% higher mechanical strengths

INSULATING GLAZING HIGH-MODULUS SILICONES



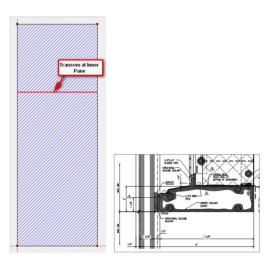
INSULATING GLAZING GAS-FILLED UNITS WITH SILICONE

High Strength Silicones

Ultra-high modulus (HM) silicone sealant as secondary edge seal to prevent gas leaking through primary seal. Three times lower argon penetration than standard silicones

- \rightarrow Stress reduction at primary seal
- → Low gas loss rates (0.3 0.6 %/year, compl. EN 1279-3)

INSULATING GLAZING HIGH MODULUS – BENEFITS


		Comments or remarks		
[kN/m ²]	2.00			
[mm]	2200			
[mm]	2500			
[mm]	8			Comments or remarks
[mm]	0		2.00	
[mm]	6			
[mm]	0		-	
	1.00			
[mm]	16		-	
Sikasil [®]	High Modulus 🔽			
	True		0	
	True		1.00	
[kN/m ²]	18		16	
			Standard IG 🛛 💌	
			Тпо	
[mm]	11.58		-	
[]				
[mm]	0.31		10	
[]				
[mm]	<u> </u>			
[]	supported		15.72	
			0.44	
[mm] 🛛 🏹	11.89	Reduction > 25%	0.41	
Silicone se	al height of the IG i	unit [mm]	glass must be	
In case of unsupported outer pane				
	[mm] [mm] [mm] [mm] [mm] [mm] Sikasil [®] [kN/m ²] [mm] [mm] [mm] [mm] [mm]	[mm] 2200 [mm] 2500 [mm] 0 [mm] 0 [mm] 6 [mm] 0 [mm] 1.00 [mm] 16 Sikasil [®] High Modulus ▼ True True [kN/m²] 18 [mm] 0.31 [mm] 0.31 [mm] glass must be supported [mm] 11.89 Silicone seal height of the IG in case of unsupported outer per supported	[mm] 2200 [mm] 2500 [mm] 0 [mm] 0 [mm] 0 [mm] 16 [mm] 16 Sikasil® High Modulus True True [kN/m²] 18 [mm] 0.31 [mm] 0.31 [mm] 25% Silicone seal height of the IG unit in case of unsupported outer pane [mm] Minimum Thickness "C" of the IG unit [mm]	[mm] 2200 [mm] 2500 [mm] 0 [mm] 6 [mm] 0 [mm] 0 [mm] 16 Sikasil® High Modulus True 0 [kN/m²] 18 [mm] 11.58 [mm] 0.31 [mm] 0.31 [mm] 11.89 Reduction > 25% 0.41 glass must be supported 15.72 [mm] 11.89 Reduction > 25% 0.41 glass must be supported 15.72 [mm] 11.89 Reduction > 25% 0.41

INSULATING GLAZING HUDSON YARDS, NEW YORK

- Kohn Pederson Fox Associates / SOM Skidmore, Owings & Merrill
- Height: 273 m (895 feet)
- 160 000 sqm SSG Facade

INSULATING GLAZING HUDSON YARDS, NEW YORK

CONDITIONS

- Standard unit: 1500 mm x 4100 mm
- Bigger unit: 2650 mm x 4500 mm
- Glass configuration: 10 / 12 / 8 [mm]
- 4-sided structurally bonded
- Inner lite additionally bonded to one or two intermediate transoms

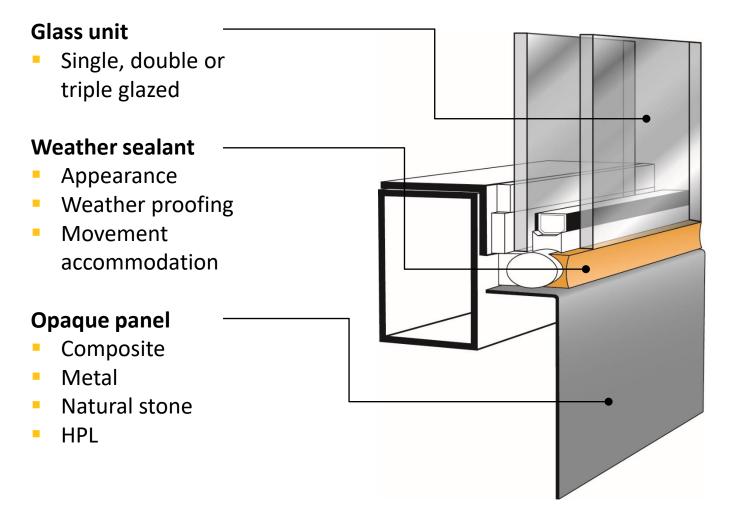
WIND LOADING

Up to -5.8 kPa (-121 psf)

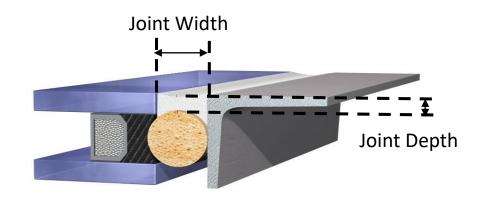
ISOCHORIC PRESSURE

■ $p_0 = 16.6 \text{ kPa} (\Delta T_{cavity} \le 50\text{K}; \Delta p_{atm} \le 2.0 \text{ kPa}; \Delta H_{altitude} \le -200 \text{ m})$

ransom at inne Pane


INSULATING GLAZING HUDSON YARDS, NEW YORK

Method of calculation	Type WT01 SSG bonded transom 2817mm from bottom edge 1460mm x 4069mm 10 / 12 / 8 wind load: -5.794kPa p ₀ = 16.6kPa	Type WT02 SSG bonded transoms 711mm and 3518mm from bottom edge 2292mm x 4112mm 10 / 12 / 8 wind load: -4.692kPa p ₀ = 16.6kPa
Standard method, only 4-sided, standard sealant	32mm	39mm
Feldmeier, only 4-sided, standard sealant	21mm	26mm
Feldmeier, only 4-sided, High Modulus	16mm	19mm
FEA calculation incl. intermediate transoms, High Modulus	12mm	9mm applied: 12mm


Feldmeier, F.: Insulating Units Exposed to Wind and Weather – Load Sharing and Internal Loads, GPD Glass Processing Days, Tampere, pp. 633-636, 2003.

WEATHER SEALING

WEATHER SEALING DETAILS

WEATHER SEALING DESIGN RULES

- Prevent adhesion on three surfaces
- Optimum ratio of joint width to joint depth is between 2:1 (for smaller joints) and 4:1 (for bigger joints)
- Minimum joint depth: 6 mm (proper section of sealant / adhesion area)
- Maximum joint depth: 15 mm (complete curing of 1-part silicone)
- Joint width to be designed according to expected movement and movement capability of sealant
- Application temperature: +5 to +40°C

Compatibility with the edge sealing system must be ensured!

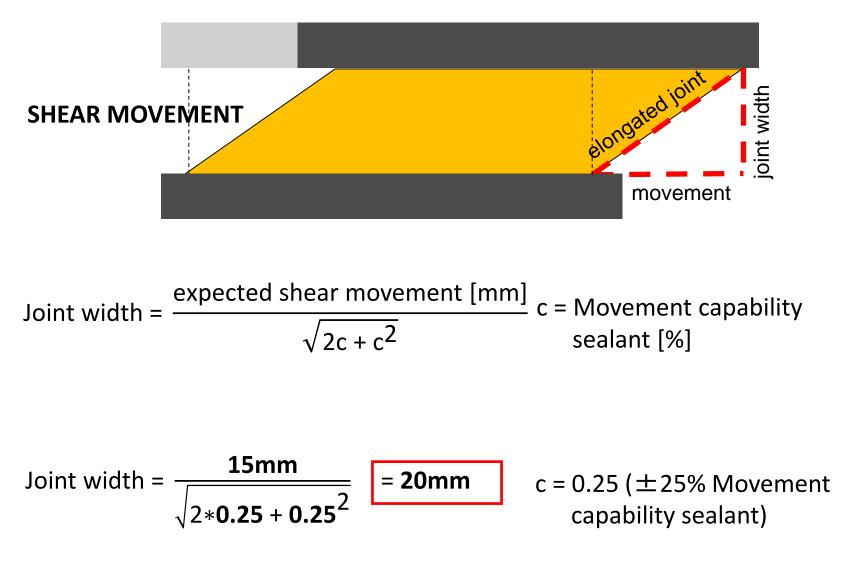
WEATHER SEALING CALCULATION JOINT WIDTH

SEALING JOINT, NORMAL MOVEMENT

Expected elongation or compression [mm]

Joint width =

Movement capability of the sealant [%]


Joint width =

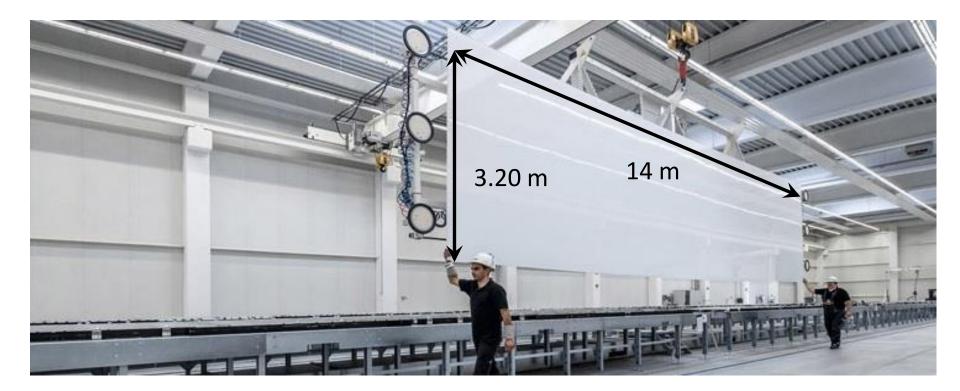
5 mm (tension)

= **20** mm

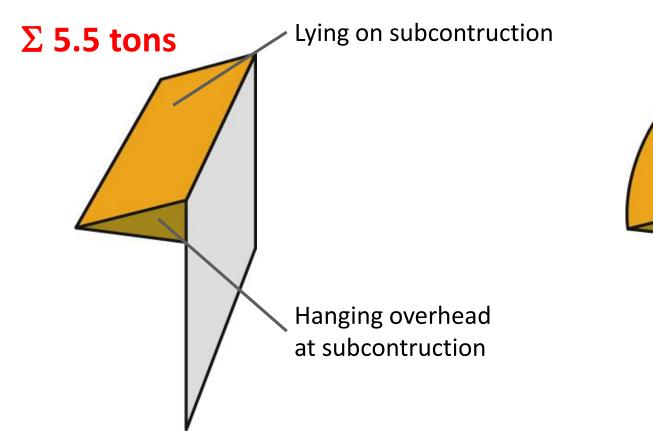
0.25 (±25 % Movement capability)

WEATHER SEALING CALCULATION JOINT WIDTH

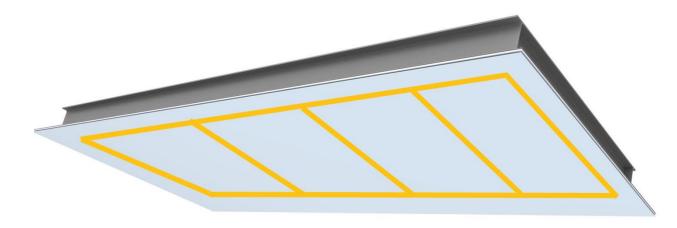
STRUCTURAL SEALANT GLAZING -TECHNICAL SERVICE


TECHNICAL SERVICE TYPICAL PROJECT PROCEDURE

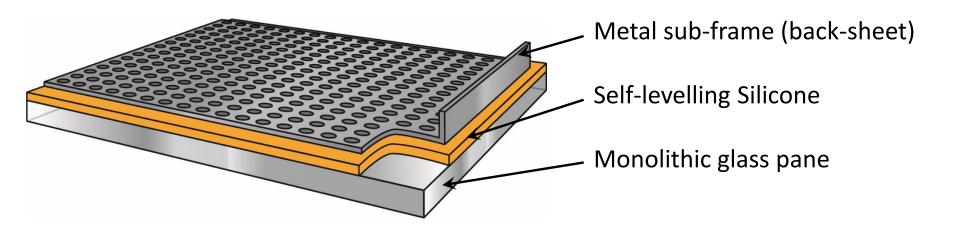
1. Design Phase	2. Test Phase	3. Application Phase	4. Warranties
Project request; Drawing submission	Sample; Submission & description	Training on product application and QC	QC Documentation
Design review; joint calculation; product recommend.	Sample testing; lab report; recommendation cleaning/pre-treatment	Application; Quality control	Warranties


Responsibility of:

Customer Supplier


WHAT'S NEW IN GLASS BONDING ??

USE AS SUN SHADES SLOPED & OVERHEAD APPLICATION



LINEAR BONDED FRAME FIXATION

- Number of additional bond lines with Standard SG adhesive:
 - → 22 lines (every 70 cm = 2.3 feet)
- Number of additional bond lines with high-strength SG adhesive:
 14 lines (avery 100 cm = 2.2 feet)
 - ➔ 14 lines (every 100 cm = 3.2 feet)
- Automated production (65'000 m²) ???

ALTERNATIVE LAMINAR SILICONE BONDING

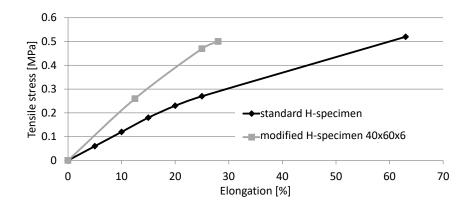
LAMINAR SILICONE BONDING DEVELOPMENT

APPLICATION REQUIREMENTS

- Laminar and bubble-free
- Fluid and self-levelling
- Uniformly adjustable to a specific thickness
- High output and fast vulcanization

QUALITY ASSURANCE

- Control of proper contact / wetting
- Release of air bubbles and reaction by-products
 - \rightarrow uniform curing


LAMINAR SILICONE BONDING SAFETY

MECHANICAL PROPERTIES

- Laminar application instead of four sided linear SSG
- Modulus and failure mode for a laminar joint
- Long-term performance according to ETAG 002 and ASTM C 1184

- 64h after glass breakage at dead load and after application of additional dynamic loading
- After cutting the intermediate silicone joints between the aluminum trays

LAMINAR SILICONE BONDING PRODUCTION

MANUAL MOCK-UP PRODUCTION

Simulation of production layout

PROCESS EVOLUTION

LAMINAR SILICONE BONDING PRODUCTION

SEMI-AUTOMATED LINE PRODUCTION

Fully automated silicone application

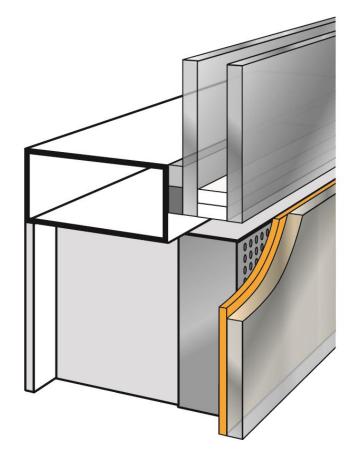
Photos: René Müller Photographie/sedak

PROCESS EVOLUTION

LAMINAR SILICONE BONDING ACHIEVEMENTS

SAVINGS IN WEIGHT, ENERGY AND RESOURCES

- One single glass pane (10 mm, 1860 kg) replaces
 heavy laminated glass units (2x 12 mm, 2760 kg) → 30 % weight reduction
- No interlayer, no lamination process
- Tempering and ceramic screen print not mandatory
- No glass fittings, no bore holes
- Weathering and temperature resistant silicone adhesive
- Application concept for serial line production realized
- Flexible application for varying dimensions or shapes
- Experience in engineering
- Mega reference project under construction


LAMINAR SILICONE BONDING OPPORTUNITIES: INTERIOR WALL PANELS

LAMINAR SILICONE BONDING PROSPECTS: SPANDREL PANEL / SHADOW BOX

- Valuable cover of the metal box
- Temperature and weathering resistant bonding
- Process integration

LAMINAR SILICONE BONDING OPPORTUNITIES: SPANDREL PANELS

LEARNING OBJECTIVES

- A basic review of industry definitions and facade, Insulated Glass and Weatherseal components.
- Present several examples of the application of innovative materials to meet the design and efficiency requirements specified within the Architectural community.
- Learn about typical project processes in the design, testing, validation and production of a curtain wall.

GLASS BONDING IS OUR PASSION

THANK YOU! THIS CONCLUDES THE AIA CONTINUING EDUCATION SYSTEMS COURSE

